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Abstract— The separation bearing controller (SBC) and 

separation-separation controller (SSC) approach can be used 
to maintain multi-robot formation, while the Computed 
Torque Control (CTC) method is used to solve the dynamic 
problems of the robot. However, the SBC and SSC approach 
combined with CTC cannot maintain multi-robot formation, if 
the leader or follower is disturbed. In this paper, the virtual 
structure method and the linear algebra approach added to the 
CTC method are used to maintain the triangular robot 
formation to follow the given trajectory. The simulation results 
show that the controller that has increased the highest MSE 
value is, MSE𝑒𝑥 = 4.5152x10-10 and MSE𝑒𝑦 = 3.3945x10-10 , and 
the lowest MSE𝑒𝑥 = 0.000010 and MSE𝑒𝑦 = 0.000011. For time 
trajectory on a circle with a value of less than 20 s and a 
number 8 with a value of 1 minute. But from the results of the 
overall robot can maintain the DDMR compilation formation 
doing trajectories in the form of a circle and number 8, both 
without interference or in the effect of interference and noise. 

Keywords—Computed Torque Control, Virtual Structure, 
Linear Algebra, Trajectory Tracking, Formation Control 

I. INTRODUCTION  

Differential Drive Mobile Robot (DDMR) is a type of 
mobile robot possessing two separately moving wheels, 
requiring adjustments to each wheel in order to move 
properly. An application of DDMR is in robot formation, 
where multiple robots move together in a formation. This 
usage type has already been used in areas such as shipping 
goods [1], search-and-rescue operations [2], and monitoring 
hazardous areas [3]. 

Robot formation requires arrangements for the movement 
of each robot to run on a trajectory by maintaining the 
desired formation form. The formation control can use the 
leader-follower approach where there is a robot leader to 
determine the path to be followed while the follower robot 
follows the robot leader by maintaining the desired 
formation. The leader-follower approach is found in the 
separation-bearing controller (SBC) and separation-
separation controller (SSC). In SBC robot follower follows 
one robot leader by maintaining distance and angle of the 
bearing. Whereas SSC is maintaining the distance and 
angular bearing of the follower robot following other 
followers. These two controller schemes can be combined 
with computed torque control, or CTC, to control the 
dynamics of the robots in a nonlinear fashion. This scheme 
allows the 4-robot formation to traverse the given trajectory 
while maintaining the formation [4]. However, if a 

disturbance is introduced to the robot follower, they will not 
be able to maintain formation, even if they are equipped with 
a nonlinear disturbance observer (NDO) method for 
estimating disturbance signals. This is because there is no 
feedback from the robot follower to the leader. 

Control of robot formation with feedback between leader 
and follower or vice versa can use a virtual structure-based 
method which uses a spring-damper approach on a triangular 
robot formation [5]. The advantage of the virtual structure 
method is that it can maintain triangular formations despite 
disturbance. But there is no coordination between robots in 
formation. 

The robot formation control with a coordination system 
between robots can use a linear algebraic approach to 
calculate the control actions so that the robot formation 
reaches a predetermined trajectory [6]. The formation control 
uses a linear algebraic approach with two control variables 
namely, the linear and angular velocity of each robot. 

From the previous problems and solutions, we then 
propose a formation control system to maintain a triangular 
formation while traversing a given trajectory. 

This paper is organized as follows: Section II explains the 
derived kinematic and dynamic models of the mobile robot. 
The proposed method is explained in Section III. The 
simulations result and analysis of the proposed method are 
presented in section IV. Section V discusses the conclusion 
of this paper. 

 

II. KINEMATIC AND DYNAMIC MODELS IN DIFFERENTIAL 

DRIVE MOBILE ROBOTS 

A. Kinematic Model 

The kinematic and dynamic model of DDMR in the two-
dimensional coordinates (x, y) is explained in this section. 
The DDMR kinematic model is needed to analyze the 
movement of the robot in the two dimensions. The linear 
velocity of a given DDMR is as follows: 
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Whereas its angular velocity is as follows:               
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Where rv  and lv  are the linear velocities of the left and 

right wheels, r is the radius of the wheels. L is the distance 
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between the center point of the wheel to the centerline of the 
robot body.  

Equations (1) and (2) may be represented in the velocity 

center point of the robot ( aa yx  ,  and  ) shown in Equation 

(3). 
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Equation (3) may then be represented in a matrix 

multiplication as follows: 
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We obtain the kinematic DDMR equation in the inertial 

frame as follows:  
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This may also be represented as follows: 
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B. Dynamic Model 

The dynamic model is obtained by deriving the model 
using a Lagrange formula. The system’s dynamic model is 
represented by the following equation [1]: 

        )()(),()( qAqBqqVqM T         (8) 

 

where M(q) 22x is the positive definitive symmetric 

inertial matrix, 22),( xqqV   is the centripetal and 

Coriolis matrices, B(q) 22x  is the input matrix, 12x  

is the torsion, 22)( xT qA   is matrix constraint and 
11x  is the Lagrange multiplier. 

This equation is very important in controlling the stability 

analysis of the robot system. Next is eliminating )(qAT in 

Equation (8) due to the unknown Lagrange modifier λ. Thus, 
the DDMR dynamic model is represented as follows: 
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III. FORMATION CONTROL DESIGN 

Our research design controls robot formation in 
trajectory tracking using the linear algebra approach [6]. 
The designed formation control is based on the formation 
state concept and nonholonomic robot model dynamics. 
Using the formation state concept, the constituent robots 
may change their formation configuration in both size and 
shape to be able to properly follow the given trajectory.  

A. Kinematic Model Using Linear Algebra 

We use a first-order kinematic model, shown in the 
equation as follows: 

                       (10) 

where, 

 Tx yxyxyx 332211
61      
61x = trivial vector in the formation space 

The chosen formation is shown in Figure 1, wherein a 
triangular formation the main controlled variable is the 
robots’ position towards their leader. 

 

 
Fig. 7. Formation scheme for three robots [5] 

B. Formation Control Using Linear Algebra 

With the knowledge of the desired state, we may now 
calculate the needed control adjustments to track the 
reference trajectory. The reference velocity is available from 
the formation control, allowing the multi-robot system to 
reach the desired formation state with minimum error. The 
formation’s kinematic model may be represented in 
Equation (11) as follows: 
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where 12x is velocity, xk1 and 12
1

x
yk   are the 

positive constants, 
d

x1  and 12
1

x
d

y  are the desired 

position, while 1x and 12
1

xy  are the actual position. 
C. Computed Torque Control Design with Virtual 

Structure 

In our research, we designed a computed torque control, 
or CTC, as the dynamics control of a DDMR set. CTC is a 
control method applying feedback linearization to a 
nonlinear system [8]. The CTC equation in DDMR is shown 
in Equation (12) as follows: 
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The CTC design with virtual structure is then added with 
Equation 2.48 to produce the following: 
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where )(i
f is the formation torque with i = 1,2,3 robots, 

22)( Xi T

S  is matrix full rank, Sk and 22x
Dk  , Sk  is 

the virtual spring, Dk is the virtual damper constants, 
12x

ne   is the tracking error, while pk and 22x
dk  , 

pk and dk  are the positive definitive diagonal matrix and 

  de .  
 

 
Fig. 8. The Methodology of physical concepts [4] 

Figure 2 shows the formation structure, with the 
constituent robots connected with virtual springs and 
dampers. This torsion provides the correct actuation for each 
robot to ensure the correct formation. We use the virtual 
structure method to convert the entire mobile robot 
formation as a virtual rigid body, using the control scheme 
for the i-th robot. 

From the CTC design, it is hoped that the constituent 
robots are able to form and maintain their designated 

formation when traversing their trajectory. The block 
diagram for the system is shown in Figure 3. 

 

 
Fig. 9. Block Diagram DDMR Using CTC with Virtual Structure  

 
Fig. 10. Block Diagram for the formation control and trajectory tracking of 

mobile robotic systems 

The robot kinematic and dynamic model may be 
designed fully by combining the control kinematics and 
dynamics. The robot control dynamics consists of the inner-
loop from the entirety of the system, where the reference is 
defined from the velocities of the right and left wheels. The 
robot control kinematics consists of the outer-loop, 
referencing the desired position of the robot when forming 
a formation. 

IV. SIMULATIONS AND RESULTS 

This section discusses the results of the design shown in 
Section III. We defined several tests with two trajectory 
shapes to test the CTC with a virtual structure, namely a 
circle shape and a figure-of-eight shape. Each trajectory 
shape will be tested with and without disturbances and noise. 

A. Circle Trajectory Test 

This testing stage uses the circle trajectory to prove that 
our designed CTC with the virtual structure can maintain 
formation. The robot parameters used in the test are shown 
in Table I. 

 
TABLE X.  PARAMETER ROBOT [3] 

Parameter The parameter 
value 

r 0.025m 
b 0.1m 
d 0.05m 

mc 3kg 
mw 0.01kg 
lc 0.0327kg.m2 

lw 3.1250kg.m2 

lm 1.5750kg.m2 

 
The circle trajectory is represented in Equation (14). 
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The robot formation’s movement in the x and y 

coordinates against time when following the circle trajectory 
is shown in Figure 5. 

 
Fig. 11. Robot Formation when following a Circle Trajectory 

In leader testing, the performance of our CTC design 
with virtual structure shows no significant error, as shown 
by the kinematics signal error. The kinematics signal error 
for this test is shown in Figures 6 to 8. 

 

 
Fig. 12. Kinematics Error (RL) 

 
Fig. 13. Kinematics Error (RF1) 

 
Fig. 14. Kinematics Error (RF2) 

From our tests, we discover that the formation criteria 
have been fulfilled. Our next test is done by introducing 
disturbance to each robot. The applied disturbance and noise 
is represented by Equation (15)[9]. 
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The circle trajectory testing with applied disturbances is 
shown in Figure 9, showing that the system’s response is 
able to follow the reference velocity signal.  

 

 
Fig. 15. Speed Reference with Disturbance and Noise 

 This test shows the effects of disturbances in the system, 
with the responses shown in Figures 10, 11 and 12. We 
discover that the robot formation manages to keep its shape 
even with the applied disturbances, shown by the MSE and 
error rates for each robot that is below the maximum 
criteria. 
 

 

Fig. 16. Kinematics Error (RL) with Disturbance and Noise 

 

Fig. 17. Kinematics Error (RF2) with Disturbance and Noise 
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Fig. 18. Kinematics Error (RF1) with Disturbance and Noise 

B. Figure-of-Eight Trajectory Testing 

The second test uses the figure-of-eight reference 
trajectory, using the trajectory equation shown in Equation 
(16). The robot formation’s movement in the x and y 
coordinates against time when following the figure-of-eight 
trajectory is shown in Figure 13. 

 

 
Fig. 19. Robot Formation when following Figure-of-Eight Trajectory 

 
The eight-shape trajectory is represented in Equation (16). 
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The test results are in the form of MSE values in the 

tracking error signal in the kinematics of each robot. The 
obtained error signals show that the system can maintain 
formation and follow the given trajectory. 

 

 
Fig. 20. Kinematic Error (RL) 

 
Fig. 21. Kinematic Error (RF1) 

 
Fig. 22. Kinematic Error (RF2) 

The next test is disturbance testing. This test is 
fundamentally similar to the disturbance test on the circle 
trajectory test suite before. Figures 17, 18 and 19 show the 
disturbance effects to the formation as shown by the MSE 
values for each robot. 

 

 
 

Fig. 23. Kinematic Error (RL) with Disturbance and Noise 

 

Fig. 24. Kinematic Error (RF1)with Disturbance and Noise 
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Fig. 25. Kinematic Error (RF1) with Disturbance and Noise 

V. CONCLUSIONS 

From our tests, we conclude that the tracking problems 
of multi-robot formations in a given trajectory while holding 
a triangular formation can be solved by applying a virtual 
structure controller and a linear algebra approach. From the 
non-disturbance tests of both circle and eight-shape tracks, 
the system can hold formation while following its given 
trajectory, showing the best error rates among the tests with  
MSE𝑒𝑥 = 4.5152x10-10 and MSE𝑒𝑦 = 3.3945x10-10. 
Disturbance testing on the two tracks shows that the system 
is able to cope with outside disturbance, as shown in the 
eight-shape test where even with a relatively high MSE 
increase in follower 2 with MSE𝑒𝑥 = 0.000010 and MSE𝑒𝑦 
= 0.000011, the formation is able to hold while traversing 
the track with error rates within the set criteria. 

Thus, it may be concluded that the proposed control 
system by using the virtual structure and the linear algebra 
approach can control and maintain a triangular formation 
tracking a given trajectory with or without disturbance. 
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