
1

Embedded FFT with dsPIC30F4013
Rachmad Setiawan

Teknik Biomedik, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember (ITS)

Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia

e-mail: rachmad@ee.its.ac.id

Abstract- FFT-based digital spectral analyzer has become more

widely used as a result of the development of Digital Signal

Processing (DSP) techniques. Modern Analog-to-Digital

Converters (ADC) and processors have made it possible to make

fast measurements with a limited number of hardware.

In this paper, a design of a simple low-cost FFT-based digital

spectrum analyzer was presented. The author discusses the design

of each components of the system in qualitatively and

quantitatively. The report presents the whole system design in

detail which contains filter design, microcontroller design and

UART transmission design. Some satisfying measurement result

of the system were presented in the paper. The system can provide

fast measurement with good accuracy but the measured result has

a limited range and resolution of the display is not very high. At

last, the advantages and disadvantages of the system was

discussed which is considered as guidelines for further work.

Keywords— FFT, Digital Signal Processing, spectrum analyzer.

I. INTRODUCTION

A spectrum analyzer is basically supposed to measure a power

of the signal versus its frequency. This job was done by using

analog Swept Spectrum Analyzer (SSA) in the old times [1].

But nowadays, a modern FFT-based digital spectral analyzer

and do the same with lesser requirement and provide better

results [2]. This has made the spectral analyzing more

convenient without hurting its accuracy [3] [4]. FFT-based

spectrum analysis (FFTSA) has become a widely used method

for many implementations [5].

As Figure 1 shows, the analyzed signal will be presented in

frequency domain instead of time domain. Letting the

horizontal axis illustrates the frequency and the vertical axis

illustrates the amplitude of the signal [6].

Figure 2 presents the basic architecture of both SSA and

Digital Spectral Analyzer. It explains theoretically how a basic

spectral analyzer works [1].

In the analog module, the analog input signal was first sent into

an analog down-converter. At the same time, the local

oscillator will provide a sinusoidal signal as reference signal to

the down-converter. After multiplying these two signals

together, the down-converter will produce a signal with

suitable frequency for subsequent processing [1].
This output signal is called Intermediate Frequency (IF) signal.
The frequency of the reference signal generated by the LO is
controlled by the frequency range of the FFT through a
controller in a Digital Spectral Analyzer.

Figure 1. Imagination of spectrum for signal

Figure 2. Simplified Spectrum Analyzer Block Diagram

Figure 3. Detailed architecture of a Digital Spectral Analyzer

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

14

2

However, it is swept linearly over the frequency band or span

to be measured [1].

In the digital module, the IF signals is sent into the ADC. The

ADC will convert the analog signal into digital form. And the

collected data is sent into DSP. The DSP will compute the FFT

and output data to digital display. The processor should also

control the LO with some algorithms. Most simple processors

have the capability to do the job.

Figure 3 presents the detailed architecture of a simple Digital

Spectral Analyzer which is studied in this paper [7]. This

figure of Digital Spectral Analyzer shows more information

about the digital module part than Figure 1 because it shows

the FFT process.

In the analog module, the analog input signal is first applied to

a sharp roll-off analog low-pass filter. The bandwidth of the

low-pass filter is controlled by the controller in the processor.

Then the output of the filter is applied to the digital module.

In the digital module, the analog signal is first applied to the

ADC. The working frequency of the ADC is also controlled

by the processor which can change the sampling frequency

generated from the reference oscillator. The sampling rate of

the ADC must be larger than twice the bandwidth of the low-

pass filter to make sure no aliasing occurs [8]. At the same

time, the reference signal with sampling frequency chosen is

read by a Weighting Function ROM and converted to digital

data. Then the multiplier will collect both data from the ADC

and Weighting Function ROM to multiply them together to

compute the FFT. Then data is transferred into the processor.

The memory of the processor will add the numbers stored in

the memory with coefficients (sin and cos) read from ROM

and restore the result [7]. Then it will add and store again under

the control of the arithmetic unit until the process is done. The

arithmetic unit also decides how the controller should control

the bandwidth of the analog low pass filter and the sampling

frequency of the reference signal. At last the processor can

output the results in memory to the display device.

The aim of the research is to design a simple Digital Spectral

Analyzer with a limited number of hardware from HIG. The

processor is a dsPIC30F4013 microcontroller. It will compute

the analog to digital conversion and FFT. Then send the result

to a PC which is considered to a display device. By building a

GUI with Delphi, the PC will display the result graphically.

Software used is MPLAB IDE with micro C30 compiler and

Delphi 7.0

The system will analyze signal from 0 to 41 kHz. It should

have some capabilities as the equipment used in laboratory

works. The system could be powered by batteries and easy to

carry, making it a convenient tool for simple signal analysis.

II. THEORITICAL BACKGROUND

2.1 FFT

The FFT refers to a "Fast Fourier Transform" which is a very

efficient "Discrete Fourier Transform"(DFT). The reason of

using FFT instead of DFT; to save time. For example, a

straight DFT with N samples requires N2 complex

multiplications, while a FFT with the same samples requires

only Nlog2N complex multiplications [9].

The reason why FFT is fast can be explained by discussing

its three characteristics: “Danielson-Lanczos Lemma” (D-L

Lemma), “twiddle factors" and” Butterfly Diagram”.

2.2 D-L Lemma

The DFT process follows equation 1 [7]:

���� = � ����	
��
���
�
�

���

� = 0,1,2, … . . , � − 1 (1)

Where F(k) is the power of the signal at frequency elements

k, and f(n) are N samples of the input function.

In a D-L Lemma, the first step is to break down the expression

into two parts: even terms and odd terms. It becomes equation

2:

���� = � ����	
��
���
�
�

���
= � + 0

���� = ∑ ��2��
�

�
��� 	

!" #$%
� & + ∑ ��2� + 1�

�

�
��� 	

!" #$%
� & 	!" #%� (2)

Where 	!" #%� = '�� known as twiddle factor

Then F (k) is broken down in this order until the expression

runs out of samples, which means

∑ = 	����� [9]. This is the reason why the number of samples

(N) in the FFT needs to be the power of 2.

Figure 4 presents the theoretical process of D-L Lemma [9].

After breaking down the expression, all units remains are f (n)

and WN
n . For example, when N=4 the final expression is

���� = ��0� +'����2� +'(���1� +'(�'����3�.

It is observable that the order of the input samples is not

natural in the new expression. When N=4, the nature ordering

of input samples should be "00 01 10 11”. While in the FFT

calculation the ordering becomes " 00 10 01 11" which is the

reverse of nature ordering. This is known as "bit reverse

ordering" which is used in the "Butterfly Diagram" [9].

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

15

3

Figure 4. Diagram of D-L Lemma

Figure 5. Diagram of Twiddle Factors

2.3 Twiddle Factors

The twiddle factor refers to a "rotating vector" which rotates

in increments according to the number of samples. As

mentioned in previous section, for calculating an FFT with N

samples, twiddle factors WN
n are needed.

Figure 5 presents how to generate twiddle factors for a certain

number of samples [9].

Figure 5 indicates that the large number of samples in FFT, the

more twiddle factors needed. And the twiddle factor has

redundancy in values as the vector rotates around [9]. This

means '�� = '��*�. Also, the values of twiddle factors with

180 degrees out of phase are the negative of each other which

means '�� = −'�
�*� . The "Butterfly diagram" takes

advantage of these characteristic of the twiddle factor, making

the FFT realizable.

2.4 The Butterfly Diagram

The Butterfly Diagram is an efficient FFT algorithm based on

D-L Lemma and the twiddle factors. For an FFT with N

Figure 6. First stage of Butterfly Diagram

Figure 7. Butterfly Diagram

samples, the Butterfly Diagram will contain log2 N stages. The

first stage of the diagram is presented in figure 6 [9].

The -1 in the Figure 7 refers to '�� = −'�� as mentioned in

previous section. Then the next stage will connect the upper

and lower legs of the butterflies presented in figure 7 [9].

The diagram will continue computing in this way until the

log2 N stage is done. Note that if the input samples are in bit

reversed ordering, the output will be natural ordering.

2.5 Low Pass Filter

In signal processing, filter is a device that can remove these

unwanted components in a signal. It can be either analog or

Figure 8. Different type of filter response

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

16

4

Figure 9. Frequency dependence of n: th order Butterworth

filter.

digital, discrete-time or continuous-time, linear or non-linear,

time-invariant or time-variant, passive or active. In this work,

an analog continuous-time active low-pass filter is chosen. As

it require lesser components and easy to be built. The purpose

of using such a filter in this work is to remove signals that have

frequency higher than half of the sampling frequency. So the

analog low-pass filter is an anti-aliasing component of the

system.

The Figure 9 are representative of a low pass filter has different

type of n th order Butterworth filter.

The Butterworth low-pass filter provides maximum pass-band

flatness. Hence, a Butterworth low-pass filter is often used as

anti-aliasing filter in data converter applications where precise

signal levels are across the entire pass-band [10].

Figure 9 illustrates that the higher order the filter has, the faster

drop band drop off is [11]. And the actual value is -6dB per

octave as it is first order.

The Sallen-key topology can provide high accuracy, unity

gain, and low Q(Q<3).

The Multiple Feedback topology is commonly used in filters

that have high Q and require a high gain [10]

III. DESIGN IMPLEMENTATION

3.1 System set up

First of all, a system clock needs to be configured. Adjusting

the clock of the microcontroller is done by setting up the

oscillator configuration register. In this work can be easily

done by using a macro: _FOSC. Then Oscillator Control

Register (OSCCON) and FRC Oscillator Tuning Register

(OSCTUN) were not written to as the FRC oscillator for this

work do not need specification. So the system clock is

configured as below:

_FOSC (CSW_FSCM_OFF & FRC)

Set up Internal Fast RC Oscillator as source oscillator. No

PLL mode enabled and disable clock switch. The oscillator

is working at 7.37MHz so the frequency of the instruction

cycle is 1.84MHz.

Then some other registers were written to provide necessary

configuration.

_FWDT (WDT_OFF)

Watch-Dog Timer is disabled.

_FBORPOR (MCLR_EN & PWRT_OFF)

Enable MCLR reset pin is enabled and the power-up timers is

disabled.

_FGS (CODE_PROT_OFF)

Code protection is disabled.

3.2 ADC configuration

The analog to digital converter used in this work in the internal

ADC of dsPIC30F4013. It can run up to 200k samples per

second without using external reference voltage. The output

format is 12-bit fractional or integer with high accuracy

(0.02%). [12]

The block diagram of the ADC is shown in Figure 12 [12].

Figure 12. Functional block diagram of the 12-bit A/D

converter of dsPIC30F4013

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

17

5

Figure 13. Pin out of dsPIC30F4013

AN0 to AN12 are input channels. Only one of them is used in

this work. Vref+ and Vref- refers to external reference voltage

which is not used in this work. ADBUF0 to ADBUFF refers

are output buffers of the ADC. Only ADBUF0 is used in this

work for easier data collecting.

The pin out of dsPIC30F4013 is presented in Figure 13 [12].

To setup a ADC that satisfy the system, the following status

registers in the dsPIC30F4013 need to be written: ADCON1,

ADCON2, ADCON3, ADPCFG, TRISB, ADCHS and

ADCSSL. The ADC was set to work with following

characteristics.

A. Generate input analog signal from port B 10, channel

AN10.

B. The ADC runs with MUX A multiplexer. Positive and

negative input of MUX A were set to be AN10 and

ground.

C. The sampling process takes 1 TAD and the conversion

takes 14 TAD.

D. The sampling frequency is of ADC is 89 kHz as the

ADCS bits on ADCON3 were set to be two. From +, =
-./��*��

� , knowing that TCY=1/FCY=0.54us, TAD is 0.81

us. So FAD=1/15*TAD=82 kHz.

E. No scan on the ADC input

F. Reference voltage of ADC is AVdd (5V) and

AVss(ground).

G. An interrupt will occur upon completion of each

conversion. This will make all the output data of ADC

stored in ADCBUF0.

H. The output data format is fractional. And the ADC will

auto start sampling and conversion after the ADC is on.

3.3 DSP engine configuration

The core of DSP used in this work is the multiplier. It

computes the FFT arithmetic. The first step to set up the DSP

is to declare the array of twiddle factors in program memory.

Then declare the array of ADC output array in the Y data bus

of the multiplier.

As mentioned in theory, an FFT process with N samples needs

only N/2 twiddle factors. As each element in twiddle factors

has one "real" part and one "image" part. So totally N

fractional numbers written in 2N bytes were contained in the

Twiddle Factor array. This array is considered as constants and

stored in program memory. The PSV mode will generate these

constant to the X data bus of multiplier when computing the

FFT which will reduce the processing time. The PSVPAG

register which is used to translate 24-bit data in program

memory to 16-bit data in multiplier can be automatically

written by a macro. The final code of this step is as follows.

constfractcomplex twiddleFactors[]__attribute__((space(auto_psv),

aligned(FFT_N*2)));[13]

The array on input sample is the array of ADC output data. For

an FFT with N samples, the input array contain N elements

which is 2N fractional numbers written in 4N bytes. To collect

data from ADC output buffer , the "real" part of the array needs

to be declared equal to ADCBUF0. Programmed as

ADCoutput[i].real=ADCBUF0, where i is an integer which

increase from zero to N-1. Then declare the array to be

transferred to y data bus of the multiplier. The code for this

step is:

fractcomplex ADCoutput[FFT_N]

__attribute__((space(ymemory),far,aligned(FFT_N*2*2)))[13]

As the output data range is [-1,1] and the multiplier requires

data range to be [-0.5,0.5][11]. The "real" parts of the array

need to be scale by 0.5 for further processing. This is done by

shift the ADC output data one bit to the right. The "imag" part

of the array also needs to be declared to be 0 as the input signal

does not contain an imaginary part.

ADCoutput[i].real = ADCoutput[i].real>>1;

ADCoutput[i].imag = 0x0000;

where i is an integer which increase from zero to N-1.

The FFT process is done with the macro

FFTComplexIP (LOG2_N, &sourcevector, (fractcomplex *)

__builtin_psvoffset(&twiddleFactors[0]),

(int)__builtin_psvpage(&twiddleFactors[0]));[13]

With this macro, the multiplier will generate input samples

from the "sourcevector" and twiddle factors from program

memory. LOG2_N refers to the number of stages the Butterfly

will process. The output result with frequency component is in

bit reversed ordering and stored back into the "sourcevector".

As the real frequency of the signal is calculated in further

processing, the "sourcevector" needs to be translated into

natural ordering. This is done by the macro

BitReverseComplex(LOG2_N, &sourcevector)[12]. As the

"sourcevector" still contains a "real" part and an "imag" part ,

and the final output is the power of the signal in

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

18

6

"real" only. The power is calculated as0 = √2� + 3�. This

is done by the macro

SquareMagnitudeCplx(FFT_N, (fractcomplex *)

&sourcevector[0], (fractional*) &sourcevector[0].real);[13]

The value of the power is stored in "real" part of the

"sourcevector" after this step. And the FFT process is

considered to be over.

3.4 UART configuration
The UART part of the system is designed to connect the

dsPIC30F4013 to the PC. Output data of DSP model is

transferred through the transmitter.

The UART model within dsPIC30F4013 is designed with

following characteristics [12]:

A . Use U1TX as transmit channel.

B. 8-bit data communication with no parity.

C. A transmission interrupt is generated when a character

is transferred to the transmit shift register and the

transmit buffer becomes empty.

D. UART model continue operation in IDLE mode.

E. UART loop back mode is disabled.

F. UART baud rate is 2300 bytes per second.

IV. EXPERIMENTAL RESULTS

In this section, measured FFT result of different kinds of
signals with the theoretical results . Figure 17-20 present the
test result of different signals

Figure 17. Measurement result of a 5kHz sine wave with 1.2V
amplitude.

Figure 18. Simulation result of a 5kHz sine wave with 1.2V

amplitude on MATLAB.

Figure 19. Measurement result of a 4kHz square wave with

1.8V amplitude.

Figure 20.Simulation result of a 4kHz square wave with 1.8V

amplitude on MATLAB

Figure 17 is the measured result of a 5kHz sine wave while

Figure 18 is the simulation result of the same signal. The

simulation was made by doing a 64 samples FFT to a 5kHz

sine wave with 82kHz sampling frequency on MATLAB. So

the simulation has similar circumstances as the real

measurement. Comparing both figures, it is indictable that,

there is a noise at the first element of the output. But it does

not affect the measurement a lot as it is display on 0Hz. This

error is produced by the A/D converter. When the A/D

converter is just turned on, the first output data has low

accuracy. Also the measured amplitude of the signal which is

1.25V is a little bit higher than the theoretical result which is

1.2V.

The simulation in Figure 20 was done similar to simulations

before, changing the simulated signal to a 4kHz square wave.

In Figure 19, the noise at 0Hz is smaller in this measurement

as the input signal is a square wave and the noise of the first

output of A/D converter did not affect the measurement a lot.

The aliasing signals in the theoretical result were not contained

in the measurement result because of the analog low-pass

filter.

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

19

7

V. CONCLUSION

The final result of the work almost follows the research aim.

So generally the system is satisfying. Considering the errors in

the measurement and limitation of the system as mentioned in

the discussion part, some further work can be done to improve

the system.

A. Add an MAX232 chip to the system as communication tool

between UART and the PC. The MAX232 mode must be

made stable for good data transmission. This can avoid

using two software for data analyze and simplify the

system.

B. Add a window function before the FFT process to improve

the result. This will also add more multiplication to the

system and greatly increase the measurement time.

C. Configure the A/D converter to sample at a higher

sampling rate. This can increase the range of the

measurement .

D. Use a graphic LCD as display device. This makes the

system work without a PC. But also increase the cost of the

system greatly.

E. Increase the number of samples of the FFT to improve the

result which will also increase the measurement time.

REFERENCES

[1] M. T. Hunter , A. G. Kourtellis, C. D. Ziomek and W. B. Mikhael,

"Fundamentals of Modern Spectral Analysis," in AUTOTESTCON, 2010

IEEE, 13-16 2010, pp. 1-5.

[2] M. T. Hunter, W. B. Mikheal and A. G. Kourtellis, "Wideband digital

down converters for Synthetic instrumentation," in IEEE Transaction on

Instrumentation and Measurement, vol. 58, no.2, pp. 263-269, Feb. 2009.

[3] M. Hunter, "Efficient fft-based spectral analysis using polynomial-based

filters for next generation test systems," in AUTOTESTCON, 2007 IEEE,

17-20 2007, pp. 677-686.

[4] W. Lowdermilk and F. Harris, "Cost effective, versatile, high performance,

spectral analysis in a synthetic instrument," in AUTOTESTCON, 2008

IEEE, 08-11 2008, pp. 148-153.

[5] W. Lowdermilk and F. Harris, "Wide spectral span spectrum analysis with

an anlog step and dwell translation pre-processor to a high dynamic range

fft-based spectrum analyzer," in AUTOTESTCON, 2009 IEEE, 14-17

2009, pp. 365-368.

[6] RF, Electronics and Wireless Test and Measurement Blog(2010).'RF

Spectrum Analyzer Tutorial and Basics'[online]. Available at:

http://testrf.com/2010/spectrum-analyzertutorial/ last accessed: 23th

March 2011.

[7] J. H. Flink , J. Bertrand and V. Cottage, "Spectrum analyzer using digital

filters" in United States Patent, Jun. 1978, pp. 54-75

[8] A. M. Chwastyk, "A fast digital spectral analyzer," in IEEE Transaction

on Instrumentation and Measurement, vo. 20, no. 4, pp. 198-202, Nov.

1971.

[9] "A DFT and FFT tutorial " (2011), available at :

http://www.alwayslearn.com/DFT%20and%20FFT%20Tutorial/DFTand

FFT_FFT_Overview .html

[10] R. Manchini. "Op amps for everyone" available at

:http://focus.ti.com/lit/an/slod006b/slod006b.pdf. Last acceded on: 12th

June 2011

[11] “Butterworth Filters" (2011), available at

:http://wwwk.ext.ti.com/SRVS/Data/ti/KnowledgeBases/analog/docume

nt/faqs/bu.htm [12] Microchip Technology Inc. (2007), "dsPIC30F3014,

dsPIC30F4013 Data Sheet". [13] Microchip Technology Inc. (2004),

"dsPIC language tools libraries".

JAREE-Journal on Advanced Research in Electrical Engineering
Volume 1, Number 1, April 2017

20

