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Abstract- FFT-based digital spectral analyzer has become more 

widely used as a result of the development of Digital Signal 

Processing (DSP) techniques. Modern Analog-to-Digital 

Converters (ADC) and processors have made it possible to make 

fast measurements with a limited number of hardware.  

In this paper, a design of a simple low-cost FFT-based digital 

spectrum analyzer was presented. The author discusses the design 

of each components of the system in qualitatively and 

quantitatively. The report presents the whole system design in 

detail which contains filter design, microcontroller design and 

UART transmission design. Some satisfying measurement result 

of the system were presented in the paper. The system can provide 

fast measurement with good accuracy but the measured result has 

a limited range and resolution of the display is not very high. At 

last, the advantages and disadvantages of the system was 

discussed which is considered as guidelines for further work. 
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I.  INTRODUCTION  

 
A spectrum analyzer is basically supposed to measure a power 

of the signal versus its frequency. This job was done by using 

analog Swept Spectrum Analyzer (SSA) in the old times [1]. 

But nowadays, a modern FFT-based digital spectral analyzer 

and do the same with lesser requirement and provide better 

results [2]. This has made the spectral analyzing more 

convenient without hurting its accuracy [3] [4]. FFT-based 

spectrum analysis (FFTSA) has become a widely used method 

for many implementations [5]. 

As Figure 1 shows, the analyzed signal will be presented in 

frequency domain instead of time domain. Letting the 

horizontal axis illustrates the frequency and the vertical axis 

illustrates the amplitude of the signal [6]. 

Figure 2 presents the basic architecture of both SSA and 

Digital Spectral Analyzer. It explains theoretically how a basic 

spectral analyzer works [1]. 

In the analog module, the analog input signal was first sent into 

an analog down-converter. At the same time, the local 

oscillator will provide a sinusoidal signal as reference signal to 

the down-converter. After multiplying these two signals 

together, the down-converter will produce a signal with 

suitable frequency for subsequent processing [1]. 
This output signal is called Intermediate Frequency (IF) signal. 
The frequency of the reference signal generated by the LO is 
controlled by the frequency range of the FFT through a 
controller in a Digital Spectral Analyzer. 

 

Figure 1. Imagination of spectrum for signal 

 

Figure 2. Simplified Spectrum Analyzer Block Diagram 

 
Figure 3. Detailed architecture of a Digital Spectral Analyzer 
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However, it is swept linearly over the frequency band or span 

to be measured [1]. 

In the digital module, the IF signals is sent into the ADC. The 

ADC will convert the analog signal into digital form. And the 

collected data is sent into DSP. The DSP will compute the FFT 

and output data to digital display. The processor should also 

control the LO with some algorithms. Most simple processors 

have the capability to do the job. 

Figure 3 presents the detailed architecture of a simple Digital 

Spectral Analyzer which is studied in this paper [7]. This 

figure of Digital Spectral Analyzer shows more information 

about the digital module part than Figure 1 because it shows 

the FFT process. 

In the analog module, the analog input signal is first applied to 

a sharp roll-off analog low-pass filter. The bandwidth of the 

low-pass filter is controlled by the controller in the processor. 

Then the output of the filter is applied to the digital module. 

In the digital module, the analog signal is first applied to the 

ADC. The working frequency of the ADC is also controlled 

by the processor which can change the sampling frequency 

generated from the reference oscillator. The sampling rate of 

the ADC must be larger than twice the bandwidth of the low-

pass filter to make sure no aliasing occurs [8]. At the same 

time, the reference signal with sampling frequency chosen is 

read by a Weighting Function ROM and converted to digital 

data. Then the multiplier will collect both data from the ADC 

and Weighting Function ROM to multiply them together to 

compute the FFT. Then data is transferred into the processor. 

The memory of the processor will add the numbers stored in 

the memory with coefficients (sin and cos) read from ROM 

and restore the result [7]. Then it will add and store again under 

the control of the arithmetic unit until the process is done. The 

arithmetic unit also decides how the controller should control 

the bandwidth of the analog low pass filter and the sampling 

frequency of the reference signal. At last the processor can 

output the results in memory to the display device. 

The aim of the research is to design a simple Digital Spectral 

Analyzer with a limited number of hardware from HIG. The 

processor is a dsPIC30F4013 microcontroller. It will compute 

the analog to digital conversion and FFT. Then send the result 

to a PC which is considered to a display device. By building a 

GUI with Delphi, the PC will display the result graphically. 

Software used is MPLAB IDE with micro C30 compiler and 

Delphi 7.0 

The system will analyze signal from 0 to 41 kHz. It should 

have some capabilities as the equipment used in laboratory 

works. The system could be powered by batteries and easy to 

carry, making it a convenient tool for simple signal analysis. 

 

II. THEORITICAL BACKGROUND 

 

2.1 FFT 

 

The FFT refers to a "Fast Fourier Transform" which is a very 

efficient "Discrete Fourier Transform"(DFT). The reason of 

using FFT instead of DFT; to save time. For example, a 

straight DFT with N samples requires N2 complex 

multiplications, while a FFT with the same samples requires 

only Nlog2N complex multiplications [9]. 

The  reason  why  FFT  is fast can  be  explained  by  discussing  

its  three  characteristics: “Danielson-Lanczos Lemma” (D-L 

Lemma), “twiddle factors" and” Butterfly Diagram”. 

 

 

2.2 D-L Lemma 

 

The DFT process follows equation 1 [7]: 
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Where F(k) is the power of the signal at frequency elements 

k, and f(n) are N samples of the input function. 

 

In a D-L Lemma, the first step is to break down the expression 

into two parts: even terms and odd terms. It becomes equation 

2: 
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Where 	!" #%� = '�� known as twiddle factor 

 

Then F (k) is broken down in this order until the expression 

runs out of samples, which means 

 

∑ = 	����� [9]. This is the reason why the number of samples 

(N) in the FFT needs to be the power of 2. 

 

Figure 4 presents the theoretical process of D-L Lemma [9]. 

After breaking down the expression, all units remains are f (n) 

and WN
n . For example, when N=4 the final expression is 

���� = ��0� +'����2� +'(���1� +'(�'����3�.  
 

It is observable that the order of the input samples is not 

natural in the new expression. When N=4, the nature ordering 

of input samples should be "00 01 10 11”. While in the FFT 

calculation the ordering becomes " 00 10 01 11" which is the 

reverse of nature ordering. This is known as "bit reverse 

ordering" which is used in the "Butterfly Diagram" [9]. 
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Figure 4. Diagram of D-L Lemma 

 

 
Figure 5. Diagram of Twiddle Factors 

 
2.3 Twiddle Factors 
 

The twiddle factor refers to a "rotating vector" which rotates 

in increments according to the number of samples. As 

mentioned in previous section, for calculating an FFT with N 

samples, twiddle factors WN
n are needed. 

Figure 5 presents how to generate twiddle factors for a certain 

number of samples [9]. 

Figure 5 indicates that the large number of samples in FFT, the 

more twiddle factors needed. And the twiddle factor has 

redundancy in values as the vector rotates around [9]. This 

means '�� = '��*�. Also, the values of twiddle factors with 

180 degrees out of phase are the negative of each other which 

means '�� = −'�
�*� . The "Butterfly diagram" takes 

advantage of these characteristic of the twiddle factor,  making 

the FFT realizable. 

 
 
2.4 The Butterfly Diagram 

 

The Butterfly Diagram is an efficient FFT algorithm based on 

D-L Lemma and the twiddle factors. For an FFT with N 

 
Figure 6. First stage of Butterfly Diagram 

 

 
 
Figure 7. Butterfly Diagram 

 

samples, the Butterfly Diagram will contain log2 N stages. The 

first stage of the diagram is presented in figure 6 [9]. 

 

The -1 in the Figure 7 refers to '�� = −'�� as mentioned in 

previous section. Then the next stage will connect the upper 

and lower legs of the butterflies presented in figure 7 [9]. 

The diagram will continue computing in this way until the 

log2 N stage is done. Note that if the input samples are in bit 

reversed ordering, the output will be natural ordering. 

 

 
2.5 Low Pass Filter 
 

 

In signal processing, filter is a device that can remove these 

unwanted components in a signal. It can be either analog or  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Different type of filter response 
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Figure 9. Frequency dependence of n: th order Butterworth 

filter. 

 

digital, discrete-time or continuous-time, linear or non-linear, 

time-invariant or time-variant, passive or active. In this work, 

an analog continuous-time active low-pass filter is chosen. As 

it require lesser components and easy to be built. The purpose 

of using such a filter in this work is to remove signals that have 

frequency higher than half of the sampling frequency. So the 

analog low-pass filter is an anti-aliasing component of the 

system. 

The Figure 9 are representative of a low pass filter has different 

type of n th order Butterworth filter. 

The Butterworth low-pass filter provides maximum pass-band 

flatness. Hence, a Butterworth low-pass filter is often used as 

anti-aliasing filter in data converter applications where precise 

signal levels are across the entire pass-band [10]. 

Figure 9 illustrates that the higher order the filter has, the faster 

drop band drop off is [11]. And the actual value is -6dB per 

octave as it is first order. 

The Sallen-key topology can provide high accuracy, unity 

gain, and low Q(Q<3). 

The Multiple Feedback topology is commonly used in filters 

that have high Q and require a high gain [10] 

 

 

 

III. DESIGN IMPLEMENTATION 
 

3.1 System set up 
 

First of all, a system clock needs to be configured. Adjusting 

the clock of the microcontroller is done by setting up the 

oscillator configuration register. In this work can be easily 

done by using a macro: _FOSC. Then Oscillator Control 

Register (OSCCON) and FRC Oscillator Tuning Register 

(OSCTUN) were not written to as the FRC oscillator for this 

work do not need specification. So the system clock is 

configured as below: 

 

_FOSC (CSW_FSCM_OFF & FRC) 

 

Set up Internal Fast RC Oscillator as source oscillator. No 

PLL mode enabled and disable clock switch. The oscillator 

is working at 7.37MHz so the frequency of the instruction 

cycle is 1.84MHz. 

 

Then some other registers were written to provide necessary 

configuration. 

 

_FWDT (WDT_OFF) 

 

Watch-Dog Timer is disabled. 

 

_FBORPOR (MCLR_EN & PWRT_OFF) 

 

Enable MCLR reset pin is enabled and the power-up timers is 

disabled. 

 

_FGS (CODE_PROT_OFF) 

 

Code protection is disabled. 

 

 

3.2 ADC configuration 
 

The analog to digital converter used in this work in the internal 

ADC of dsPIC30F4013. It can run up to 200k samples per 

second without using external reference voltage. The output 

format is 12-bit fractional or integer with high accuracy 

(0.02%). [12] 

 

The block diagram of the ADC is shown in Figure 12 [12]. 

 

 

Figure 12. Functional block diagram of the 12-bit A/D 

converter of dsPIC30F4013 
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Figure 13. Pin out of dsPIC30F4013 

 

AN0 to AN12 are input channels. Only one of them is used in 

this work. Vref+ and Vref- refers to external reference voltage 

which is not used in this work. ADBUF0 to ADBUFF refers 

are output buffers of the ADC. Only ADBUF0 is used in this 

work for easier data collecting. 

 

The pin out of dsPIC30F4013 is presented in Figure 13 [12]. 

To setup a ADC that satisfy the system, the following status 

registers in the dsPIC30F4013 need to be written: ADCON1, 

ADCON2, ADCON3, ADPCFG, TRISB, ADCHS and 

ADCSSL. The ADC was set to work with following 

characteristics. 

 

A. Generate input analog signal from port B 10, channel 

AN10. 

B.  The ADC runs with MUX A multiplexer. Positive and 

negative input of MUX A were set to be AN10 and 

ground. 

C. The sampling process takes 1 TAD and the conversion 

takes 14 TAD. 

D. The sampling frequency is of ADC is  89 kHz as the 

ADCS bits on ADCON3 were set to be two. From +, =
-./��*��

�  , knowing that TCY=1/FCY=0.54us, TAD is 0.81 

us. So FAD=1/15*TAD=82 kHz. 

E. No scan on the ADC input 

F. Reference voltage of ADC is AVdd (5V) and 

AVss(ground). 

G. An interrupt will occur upon completion of each 

conversion. This will make all the output data of ADC 

stored in ADCBUF0. 

H. The output data format is fractional. And the ADC will 

auto start sampling and conversion after the ADC is on. 

 

 

3.3 DSP engine configuration 
 

The core of DSP used in this work is the multiplier. It 

computes the FFT arithmetic. The first step to set up the DSP 

is to declare the array of twiddle factors in program memory. 

Then declare the array of ADC output array in the Y data bus 

of the multiplier. 

As mentioned in theory, an FFT process with N samples needs 

only N/2 twiddle factors. As each element in twiddle factors 

has one "real" part and one "image" part. So totally N 

fractional numbers written in 2N bytes were contained in the 

Twiddle Factor array. This array is considered as constants and 

stored in program memory. The PSV mode will generate these 

constant to the X data bus of multiplier when computing the 

FFT which will reduce the processing time. The PSVPAG 

register which is used to translate 24-bit data in program 

memory to 16-bit data in multiplier can be automatically 

written by a macro. The final code of this step is as follows. 

 
constfractcomplex twiddleFactors[]__attribute__((space(auto_psv), 

aligned(FFT_N*2)));[13] 

 

The array on input sample is the array of ADC output data. For 

an FFT with N samples, the input array contain N elements 

which is 2N fractional numbers written in 4N bytes. To collect 

data from ADC output buffer , the "real" part of the array needs 

to be declared equal to ADCBUF0. Programmed as 

ADCoutput[i].real=ADCBUF0, where i is an integer which 

increase from zero to N-1. Then declare the array to be 

transferred to y data bus of the multiplier. The code for this 

step is: 

 
fractcomplex ADCoutput[FFT_N] 

__attribute__((space(ymemory),far,aligned(FFT_N*2*2)))[13] 

 

As the output data range is [-1,1] and the multiplier requires 

data range to be [-0.5,0.5][11]. The "real" parts of the array 

need to be scale by 0.5 for further processing. This is done by 

shift the ADC output data one bit to the right. The "imag" part 

of the array also needs to be declared to be 0 as the input signal 

does not contain an imaginary part. 

 
ADCoutput[i].real = ADCoutput[i].real>>1; 

ADCoutput[i].imag = 0x0000; 

 

where i is an integer which increase from zero to N-1. 

 

 

The FFT process is done with the macro 

 
FFTComplexIP (LOG2_N, &sourcevector, (fractcomplex *) 

__builtin_psvoffset(&twiddleFactors[0]), 

(int)__builtin_psvpage(&twiddleFactors[0]));[13] 

 

With this macro, the multiplier will generate input samples 

from the "sourcevector" and twiddle factors from program 

memory. LOG2_N refers to the number of stages the Butterfly 

will process. The output result with frequency component is in 

bit reversed ordering and stored back into the "sourcevector". 

As the real frequency of the signal is calculated in further 

processing, the "sourcevector" needs to be translated into 

natural ordering. This is done by the macro 

BitReverseComplex(LOG2_N, &sourcevector)[12]. As the 

"sourcevector" still contains a "real" part and an "imag" part , 

and the final output is the power of the signal in 
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"real" only. The power is calculated as0 = √2� + 3�. This 

is done by the macro 

 
SquareMagnitudeCplx(FFT_N, (fractcomplex *) 

&sourcevector[0], (fractional*) &sourcevector[0].real);[13] 

 

The value of the power is stored in "real" part of the 

"sourcevector" after this step. And the FFT process is 

considered to be over. 

 

3.4 UART configuration 
The UART part of the system is designed to connect the 

dsPIC30F4013 to the PC. Output data of DSP model is 

transferred through the transmitter.  

The UART model within dsPIC30F4013 is designed with 

following characteristics [12]: 

A .  Use U1TX as transmit channel. 

B. 8-bit data communication with no parity. 

C. A transmission interrupt is generated when a character 

is transferred to the transmit shift register and the 

transmit buffer becomes empty. 

D. UART model continue operation in IDLE mode. 

E. UART loop back mode is disabled. 

F. UART baud rate is 2300 bytes per second. 

 

IV. EXPERIMENTAL RESULTS 

In this section, measured FFT result of different kinds of 
signals with the theoretical results . Figure 17-20 present the 
test result of different signals 
 

Figure 17. Measurement result of a 5kHz sine wave with 1.2V 
amplitude. 
 

 
 

Figure 18. Simulation result of a 5kHz sine wave with 1.2V 

amplitude on MATLAB. 

 

 
 

Figure 19. Measurement result of a 4kHz square wave with 

1.8V amplitude. 

 

 
 

Figure 20.Simulation result of a 4kHz square wave with 1.8V 

amplitude on MATLAB 

 

Figure 17 is the measured result of a 5kHz sine wave while 

Figure 18 is the simulation result of the same signal. The 

simulation was made by doing a 64 samples FFT to a 5kHz 

sine wave with 82kHz sampling frequency on MATLAB. So 

the simulation has similar circumstances as the real 

measurement. Comparing both figures, it is indictable that, 

there is a noise at the first element of the output. But it does 

not affect the measurement a lot as it is display on 0Hz. This 

error is produced by the A/D converter. When the A/D 

converter is just turned on, the first output data has low 

accuracy. Also the measured amplitude of the signal which is 

1.25V is a little bit higher than the theoretical result which is 

1.2V. 

 

The simulation in Figure 20 was done similar to simulations 

before, changing the simulated signal to a 4kHz square wave. 

In Figure 19, the noise at 0Hz is smaller in this measurement 

as the input signal is a square wave and the noise of the first 

output of A/D converter did not affect the measurement a lot. 

The aliasing signals in the theoretical result were not contained 

in the measurement result because of the analog low-pass 

filter. 
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V. CONCLUSION 

 

The final result of the work almost follows the research aim. 

So generally the system is satisfying. Considering the errors in 

the measurement and limitation of the system as mentioned in 

the discussion part, some further work can be done to improve 

the system.  

A. Add an MAX232 chip to the system as communication tool 

between UART and the PC. The MAX232 mode must be 

made stable for good data transmission. This can avoid 

using two software for data analyze and simplify the 

system.  

B. Add a window function before the FFT process to improve 

the result. This will also add more multiplication to the 

system and greatly increase the measurement time.  

C. Configure the A/D converter to sample at a higher 

sampling rate. This can increase the range of the 

measurement .  

D. Use a graphic LCD as display device. This makes the 

system work without a PC. But also increase the cost of the 

system greatly.  

E. Increase the number of samples of the FFT to improve the 

result which will also increase the measurement time.  
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