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Abstract—Unmanned Surface Vehicles (USV) are self-driving 

vehicles that operate on the water surface. In order to be operated 

autonomously, USV has a guidance system designed for path 

planning to reach its destination. The ability to detect obstacles in 

its paths is one of the important factors to plan a new path in 

order to avoid obstacles and reach its destination optimally. This 

research designed an obstacle tracking system which integrates 

USV perception sensors such as camera and Light Detection and 

Ranging (LiDaR) to gain information of the obstacle’s relative 

position in the surrounding environment to the ship. To improve 

the relative position estimation of the obstacles to the ship, 

Kalman filter is applied to reduce the measurements noises. The 

results of the system design are simulated using MATLAB 

software so that results can be analyzed to see the performance of 

the system design. Results obtained using the Kalman filter show 

12% noise reduction. 

Keywords – filter kalman, obstacle tracking, unmanned surface 

vehicle. 

I. INTRODUCTION 

The advancement of unmanned systems can be found 
everywhere today. Commonly known as drones, this 
technology is available in lots of variety that could use to help 
with human needs, especially in military development. The 
variety of unmanned vehicles consist of ground vehicle, aerial 
vehicle, surface vehicle, underwater vehicle and even 
spacecraft. The development of unmanned vehicles is so vast 
because it needs to combine lots of features to be able to operate 
autonomously. 

 Unmanned Surface Vehicle (USV) are one of the drones 
that operates autonomously on the sea surface, commonly used 
to take data and patrol the area. USV could be operated 
manually, guided from distance, or operated autonomously. 
Because USV does not need crew onboard, the ship size is 
smaller than most ships with better flexibility to move in 
hazardous marine environments. These benefits improved 
personnel safety and enabled USV to take harsh and dangerous 
tasks [1,2,3]. The usage of USV has proved efficient in 
hydrographic survey which saves lots of time and power. 

USV has a guidance system that enables path planning to 
reach a destination point. One of the important elements for 
USV to be able to go through the path is to know the obstacle 
it is facing. USV sensors have the role to detect obstacles within 
its line of sight. Detected obstacles will be the reference for the 

guidance system to plan a new path which must be taken 
quickly to avoid collisions. For the USV to be able to make a 
quick decision it needs an estimation method from the 
measurement data to estimate the position of the obstacle on its 
path. 

In this research, Kalman Filter is designed to minimize the 
measurement error to improve its performance. Kalman Filter 
is known to be reliable in finding the best estimation of states 
by combining several sensors. Camera and LiDaR are the 
combined sensors used to measure the relative distance and 
angle of obstacles to the ship. This paper aims to provide 
increased reliability in tracking obstacle’s movement using the 
Kalman filter applied to the detection system. 

II. METHODS 

A. Basic Theory 

1) Unmanned Surface Vehicle (USV) 

 USV is a robot in the form of a ship without a crew that 
could operate in the lake or sea. This unmanned vehicle is low 
cost and has high mobility. The NGC (Navigation, Guidance, 
and Control) system in USV supports the ship to operate 
autonomously by controlling the ship through a planned path to 
reach the destination while avoiding all obstacle on its path 
[4,5,6]. Camera, LiDaR, and radars are commonly used sensors 
in USV to detect obstacles up to hundreds of meters to the ship. 
USV is integrated with several sensor and controller variations 
to support its operation without human help, however on certain 
conditions, the ship could be controlled manually if needed. 
USV application is widely used in water environment 
monitoring. From acquiring the water quality information and 
mapping the ocean environment. 

2) LiDaR 

LiDaR (light detection and ranging) is a sensor that works 
like radar imaging. LiDaR as a laser-based sensor uses coherent 
light, a light that is composed of a very narrow band of 
wavelengths. Light in general is composed of various 
wavelengths with specific color. With a collection of various 
waveforms, a laser can produce light with a narrow range of 
wavelengths. This light can be transmitted over long distances 
as a narrow beam with little distortion compared to light in 
general [7,8].  
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By using coherent light, LiDaR is able to measure the 
distance of itself to an object by receiving reflected laser pulses 
emitted to objects in its line of sight. The time interval after 
light is emitted until the reflection is received will give 
information needed to calculate the distance. LiDaR is proved 
to be an effective identification tool for its surrounding 
environment.  

3) YOLO 

You Only Look Once (YOLO) is an object detection 
approach using a single convolutional neural network. This 
convolutional neural network will be run on full images in one 
evaluation. It will predict multiple bounding boxes 
simultaneously with class probability of the object detected. 
Bounding box is a common method used to represent the 
location of an object detected in an image. 

YOLO algorithm will give bounding boxes coordinates 
relative to the whole image. Each bounding box is represented 
with 4 vector elements and contains a confidence score for the 
object predicted. It shows the probability of how accurately the 
bounding box predicts the object detected. Each bounding has 
these parameters: 

• X left: upper left point of bounding box in x-axis 

• Y top: upper left point of bounding box in y-axis 

• X right: bottom right point of bounding box in x-axis 

• Y bottom: bottom right point of bounding box in y-axis 

YOLO divides the image into S × S grid, where each grid 
predicts B bounding boxes, confidence score for each box and 
C class probabilities. [9,10,11]. For every grid with the same 
single object detected will combine to be region proposals. 
These region proposals with confidence score above threshold 
will be represented by a bounding box to show the region of 
object detected on the image. The simplified process of how 
YOLO works is shown in Figure 1. 

Convolutional neural network is the base element which 
could detect and classify every object detected in the image. 
Object detection algorithms need lots of training to be able to 
distinguish and object from its environment. The training result 
will be kept in the hidden layer as reference to help the network 
in classifying the object detected.  

 
Fig. 1. Simplified illustration of YOLO model [9] 

 
Fig. 2. Convolutional Neural Network in YOLO [9] 

Hundreds and thousands of images of an object is needed to 
train the CNN for the network to have high accuracy of object 
detection. The object detection Algorithm will only be able to 
detect objects that have been trained. Untrained objects 
detected in the image will have a small confidence score and 
does not show up i fit is below the threshold value. 

4) Kalman Filter 

Kalman Filter is an algorithm that separates a signal from 
additive noises. With state-space configuration, Kalman filter 
enables multiple input/multiple output (MIMO) scenarios. The 
Kalman filter uses least square error which is optimal in 
minimizing covariance error from its estimation. Kalman Filter 
needs a system model and measurement model as defined by 
(1) [12, 13].  

𝒙𝑘+1 = 𝝓𝑘𝒙𝑘 + 𝒘𝑘 

𝒛𝑘 = 𝑯𝑘𝒙𝑘 + 𝒗𝑘            (1) 

The first initialization is to assume a temporary estimation 
notated by 𝒙𝑘

−. Then calculate the difference of the estimated 
state 𝒙𝑘

− and measurement data 𝒛𝑘 to get the optimal estimation 
by (2).  

𝒙𝑘 = 𝒙𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝑘𝒙𝑘

−)           (2) 

Where 𝒙𝑘 will be the new and optimal state estimation and 
𝑲𝑘  is the Kalman gain acquired from (3). Gain Kalman is 
needed to get the optimal state estimation. Before going to the 
next iteration, get the new covariance error matrix by (4) and 
(5) to have the optimal Kalman gain value for the next iteration. 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹𝑘)
−1          (3) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘
−            (4) 

𝑷𝑘+1
− = 𝝓𝑘𝑷𝑘𝝓𝑘

𝑇 + 𝑸𝑘           (5) 

B. System Design 

1) Image data acquisition 

Images that show the USV line of sight are taken by 4 
cameras arranged as a sensor that cover 169° angle of view. 
With the specification each camera has a 46° angle of view. 
Each camera with its neighboring cameras are set to have a 
difference of 41° apart from each center. The image size 
produced by the camera is 640 x 480 pixels for 4 images, with 
each image being 320 x 240 pixels. The structure illustration of 
the sensor arrangement with camera and LiDaR placed on top 
of it is shown in Figure 4.  

Specifications of images taken from the camera used have 
46° angle of view. The sample results of the images taken are 
shown in Figure 5. Where the camera sequence from right to 
left is shown from top left to bottom right. The objects that are 
detected from using the YOLO system are marked with a 
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number of bounding boxes according to the number of detected 
objects above the threshold. The sample image output from 
YOLO is shown in Figure 3. 

 

 

Fig. 3. Image processing result using YOLO 

 
Fig. 4. Camera and LiDaR sensor structure 

2) LiDaR Data Reading 

The data obtained from LiDaR is processed so that it is 
obtained in a table with csv format with the distance of object 

detected information for each LiDaR divided into 8 beam 
segments. For each segment it can detect up to 5 obstacles, so 
it has a table size of 233 columns for 4 LiDaRs. 

3) Integrating Camera and LiDaR Data 

In the LiDaR data, it is known that the reading of each 
LiDaR data is divided into 8 segments. So, we divide the area 
in the image for each segment, so that we can differentiate 
which object the camera detects is in which segment. Then the 
minimum distance will be taken in the related segment to be 
assumed as the relative distance of the object detected to the 
ship. 

By applying this concept, the distance of the object detected 
by the camera will be known if an object is detected in the 
LiDaR segment. The coordinates of the detected object in the 
images are obtained from the bounding boxes. Which is 
converted into angle data and then used to determine the 
position of the object to the relevant segment from the LiDaR 
sensor reading. 

It is arranged that the camera sensor structure consists of 4 
cameras structured to form a 169° angle of view. With a little 
intersection at the edges. To get accurate object position results, 
the angular value for each object detected by each camera will 
be combined into one, calculated from the center point for all 
cameras. Suppose the object detected on the 1st camera on the 
right is illustrated as in Figure 5. 

Fig. 5. Distance ang angle transformation illustration 

Where d is the distance of the object detected from the 
camera, 𝑑𝑜 is the distance of the object detected to the sensor 
center point, 𝑟 is the distance from the sensor center point to the 
camera's center poin, 𝜃 is the angle of the object detected the 
camera, 𝜃𝑟 is the angle from sensor center point to the center 
point of the first camera. Parameters and variables in the 
illustration are presented in Table 1. 

TABLE I.  PARAMETER AND VARIABLE INFORMATION TO CALCULATE 

DISTANCE AND ANGLE 

Symbol Value Unit 

𝑟 150 mm 

𝜃𝑟 28.5 deg 

𝜃 46 deg 

𝛾 𝜃 + 5.5  deg 

𝛼 180 - 𝛾 + 𝜃𝑟 deg 
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Based on Figure 5, it is acquired the equation to find the 
distance of the object detected to the center point of sensors by 
(7). Then to find the angular value of the object detected to the 
center point of sensors by (9). 

𝑑𝑜 
2 = 𝑟2 + 𝑑2 − 2. 𝑟. 𝑑.    (𝛼)           (6) 

𝑑𝑜 = √𝑟2 + 𝑑2 − 2. 𝑟. 𝑑.    (180 −  𝜃 − 5.5 + 𝜃𝑟 ) (7) 

𝐶𝑜𝑠 (𝜃𝑜) =
(𝑟.𝑐𝑜𝑠(𝜃𝑟)+𝑑.𝑐𝑜𝑠(𝛾))

𝑑𝑜
           (8) 

𝜃𝑜 =    −1 (𝑟.𝑐𝑜𝑠(𝜃𝑟)+𝑑.𝑐𝑜𝑠(𝛾))

𝑑𝑜
           (9) 

The value of 𝛾 in (10) and (11) is different for each camera. 
From right to left, the value of 𝛾 are 𝜃 + 38.5°, 𝜃 − 2.5 , 𝜃 −
43.5 , an  𝜃 − 84.5 . 

4) Obstacle Tracking 

The integrated sensors will provide information of obstacle 
detected position at each timestamp, but it is not known which 
obstacle detected at the present time is the same object as the 
obstacle detected at the previous time. So to find out whether 
the current obstacle is the same object as the previous obstacle, 
it is necessary to track the object movement based on the 
object's relative distance and angle displacement to the USV for 
each object detected at each timestamp. The obstacle’s distance 
displacement is calculated based on the obstacle’s distance and 
angle to the USV by assuming the distance and object angle 
from the USV at each timestamp is a vector. The displacement 
distance for each obstacle, can be calculated using the dot 
product formula in (10) 

𝑠 = √𝑑(𝑘)2 + 𝑑(𝑘 − 1)2 − 2. 𝑑(𝑘). 𝑑(𝑘 − 1)    (𝜃𝑚)   (10) 

𝜃𝑚 = |𝜃0(𝑘) − 𝜃0(𝑘 − 1)          (11) 

Where 𝑠  is the displacement of the obstacle’s distance, 
𝑑(𝑘) is the distance of the obstacle relative to the USV at time 
𝑘, 𝜃𝑚 is the angle formed between the two obstacle distance 
vectors to the USV, and 𝜃0(𝑘) is the angle of obstacle to the 
USV at time 𝑘. 

If the distance and angle of of the obstacle displacement is 
lower than the threshold that has been set, it can be stated that 
the object at time 𝑡 =  𝑘 dan 𝑡 = 𝑘 − 1 is the same object. The 
vector illustration is shown in Figure 6. 

 

Fig. 6. Obstacle tracking illustration 

5) Kalman Filter Design 

The concept in using the Kalman filter requires a system 
model and a measurement model. Therefore, the Kalman Filter 
design is done by determining the model which is represented 

in the form of state-space. The system model and measurement 
model used in the Kalman Filter application at USV are shown 
in equation (12). 

𝒙𝑘 =  𝑨𝒙𝑘−1 + 𝑩𝒖𝑘 + 𝒘𝑘 

𝒛𝑘 = 𝑯𝑘𝒙𝑘 + 𝒗𝑘          (12) 

𝑨 = [

1 ∆𝑡 0 0
0 1 0 0
0 0 1 ∆𝑡
0 0 0 1

]          (13) 

𝑩 =

[
 
 
 
 
1

2
∆𝑡2 0

∆𝑡 0

0
1

2
∆𝑡2

0 ∆𝑡 ]
 
 
 
 

           (14) 

𝒙𝑘 =

[
 
 
 
𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

𝑥4(𝑘)]
 
 
 

           (15) 

𝒖𝑘 = [
𝑎(𝑘)

𝛼(𝑘)
]           (16) 

To run the Kalman Filter, obstacle tracking needs up to 
three timestamps to have the history information of obstacle 
distance and angle to the USV from 𝑡 = 𝑘 to 𝑡 = 𝑘 − 2. These 
measurement data will be used to get initial estimates to obtain 
velocity, acceleration, angular velocity, and angular 
acceleration values using equations (17) to (20). 

𝑥2(𝑘 − 1) =
𝑥1(𝑘−1)−𝑥1(𝑘−2)

∆𝑡
         (17) 

𝑎(𝑘) =
𝑥1(𝑘)−2𝑥1(𝑘−1)+𝑥1(𝑘−2)

∆𝑡2          (18) 

𝑥4(𝑘 − 1) =
𝑥3(𝑘−1)−𝑥3(𝑘−2)

∆𝑡
         (19) 

𝛼(𝑘) =
𝑥3(𝑘)−2𝑥3(𝑘−1)+𝑥3(𝑘−2)

∆𝑡2          (20) 

The initial estimated value then can be found at time 𝑘. The 
initial value of the covariance matrix on the Kalman filter will 
be able to be calculated. So that the Kalman filter algorithm 
process can be executed properly. 

III. RESULTS AND DISCUSSIONS 

It is decided to take a simulation test because images 
captured on field test were disturbed by seawater splash on the 
sensors, resulting in unoptimized obstacle detection because of 
blurry images. The simulation ran on MATLAB with planned 
USV and obstacle trajectory. Up to five obstacles are simulated 
to see the system performance with parameters set beforehand. 
The obstacles and USV are assumed to have constant velocity 
in a straight path. Each obstacle velocity is varied to produce 
different cases. Simulation ran with a variation on covariance 
Q and R value to see the difference in filter performance 
[14,15]. The 1st simulation ran with covariance Q value higher 
than covariance R. While the 2nd simulation ran with 
covariance Q value lower than covariance R. With covariance 
Q and R used are shown in table 2. 

 

 

 

𝑑(𝑘 − 1) 

𝑠 

 

𝜃𝑚 

𝑑(𝑘) 
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TABLE II.  COVARIANCE Q DAN R VALUE 

Simulation Q R 

1st Kalman Filter 

[

2 0 0 0
0 20 0 0
0 0 2 0
0 0 0 20

] [

1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 10

] 

2nd Kalman 

Filter [

0.5 0 0 0
0 5 0 0
0 0 0.5 0
0 0 0 5

] [

1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 10

] 

 

In the simulation with five obstacles, some obstacles will be 
simulated blocking each other. as shown in Figure 8. Plots of 
the obstacle’s distance and angle relative to the ship are shown 
in from figure 7 to 17. 

The comparison between Root Mean Square Error (RMSE) 
of the Kalman filter results and the measurements shows that 
some of the RMSE of 2nd Kalman filter gives a greater value 
than the RMSE of the measurement, while the RMSE with 1st 
Kalman filter gives smaller RMSE value, as shown in table 3. 
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(d) 

Fig. 7.  Path simulation with five obstacles: (a) 5 seconds. (b) 15 seconds. (c) 

23 seconds. (d) 30 seconds. 
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Fig. 8.  Relative distance plot of USV to 1st obstacle 

 

Fig. 9.  Relative angle plot of USV to 1st obstacle 

 

Fig. 10.  Relative distance plot of USV to 2nd obstacle 

 

Fig. 11.  Relative angle plot of USV to 2nd obstacle 

 

Fig. 12. Relative distance plot of USV to 3rd obstacle 

 

Fig. 13. Relative angle plot of USV to 3rd obstacle 
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Fig. 14. Relative distance plot of USV to 4th obstacle 

 

Fig. 15. Relative angle plot of USV to 4th obstacle 

 

Fig. 16 Relative distance plot of USV to 5th obstacle 

 

Fig. 17. Relative angle plot of USV to 5th obstacle 

TABLE III.  FILTER KALMAN RESULTS RMSE COMPARISON 

Obstacle 
Measurement 

RMSE 

1st 
Kalman 

Filter 
RMSE 

2nd 
Kalman 

Filter 
RMSE 

1st 
obstacle 

Distance 0.9356 0.8122 0.8290 

Angle 1.0042 0.9652 1.5251 

2nd 

obstacle 

Distance 1.0297 0.8885 0.8666 

Angle 0.9833 0.9205 1.2379 

3rd 

obstacle 

Distance 1.0984 0.8508 0.6961 

Angle 1.0326 0.8838 0.7340 

4th 

obstacle 

Distance 1.0694 0.9730 1.1124 

Angle 0.9904 0.9144 1.2416 

5th 

obstacle 

Distance 0.9745 0.8273 0.9908 

Angle 1.0418 0.8868 1.3513 

IV. CONCLUSIONS 

From the results of the obstacle tracking simulation using 
Kalman filter, the following conclusions can be taken: 

1. The obstacle tracking algorithm with integrated camera 
sensor data and LiDaR is running well. This is shown by 
the obstacles that are still detected as the same object even 
though there are intersections between obstacles. 

2. Estimation of relative distance and angle of obstacle 
detected to ship using the Kalman filter shows a smaller 
error value, although it is still closer to the measurement 
value than the actual value. 

3. The Kalman filter estimation results give a better 
estimated value when the covariance 𝑸 value is greater 
than covariance 𝑹 value. It is shown by the estimation 
value which is closer to the true value than the 
measurement value. Because the covariance 𝑸 will affect 
the change in the 𝑷  covariance, while the relationship 
between the 𝑷  covariance and the 𝑹  covariance will 
affect the Kalman gain value in each iteration. This can be 
seen from the comparison of the Kalman RMSE filter. 

4. Sensor integration application on the field is still facing 
problems due to seawater splash obstructing the camera 
vision, resulting in blurry images processed by YOLO. 
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