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Abstract—Nonholonomic Mobile Robot (NMR) is a mode 

of transportation that is widely used in industry. NMR is 

driven by an actuator with limited torque which magnitude of 

control signal is always limited. To solve this problem two 

controllers were designed, i.e. kinematic controller and 

dynamic controller. A kinematic controller is designed so that 

the additional speed converges to the desired speed, while the 

dynamic controller is designed using H performance to 

overcome the control signal constraints. State-feedback gain 

of the dynamics controller is obtained using Linear Matrix 

Inequalities (LMI) approach. Simulation results show that the 

designed controllers can perform tracking according to the 

reference trajectory with the magnitude of torques are less 

than ±0.6 Nm and the tracking error is 0.009 m in the presence 

input constraint and external disturbance. 
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I. INTRODUCTION 

The use of nonholonomic mobile robot (NMR) 

technology has been widely used for various purposes. 

Several studies on NMR have been carried out, including 

research on the stability of mobile robots [1], trajectory 

tracking of mobile robots [2], and robustness of mobile 

robots to external and internal disturbances [3]. 

Many control methods are used to solve control 

problems in NMR, such as sliding mode controller [4] and 

time-varying controller [5]. A sliding mode controller is 

used for trajectory tracking by considering the kinematic 
model of the mobile robot. Meanwhile, the time-varying 

controller is designed using the Lyapunov approach to 

solve the problems of stability and tracking in NMR. The 

simulation results show that NMR can perform tracking 

with the tracking error converges to zero.  

In its application, the dynamic model of NMR 

cannot be ignored in the control so that in [6] a nonlinear 

control method with saturation constraint is used. In [7], 

Linear Active Disturbance (LADRC) and Extended State 

Observer (ESO) algorithms are used to solve the problem 

of input constraints given to the system. NMR is driven by 

an actuator with limited torque so that the magnitude of the 
control signal is always limited. System performance 

which is often limited causes the system to become 

unstable [8,9], so that the development of adaptive control 

schemes for mobile robots with input constraints is an 

interesting research to do. 

Stability and tracking problems of mobile robot 

with input (control signal) constraints and external 

disturbances are discussed in [10]. The application of the 

proposed method is more complicated, so that the resulting 

trajectory tracking cannot follow the reference trajectory 

due to the input constraints. To overcome this input 

constraints, H performance is used and Lyapunov 
inequality is solved by Linear Matrix Inequalities 

optimization so that the state-feedback gain can be 

obtained [11]. The simulation results show that the mobile 
robot can perform tracking according to the reference 

trajectory. 
Based on the various problems and solution above, this 

study uses two controllers, namely kinematic controller and 
dynamic controller. The kinematic controller is designed so 
that the additional speed converges to the desired speed. 

Dynamic controller is designed using H performance to 
overcome the input constraint and the Lyapunov inequality 
is solved by Linear Matrix Inequalities so that state-
feedback gain can be obtained with given input constraint.  

II. METHODS 

Many approaches of Multiple Object Tracking (MOT) 
have a common strategy, the first step is detecting object  

A. Nonholonomic Mobile Robot Model 

The nonholonomic mobile robot (NMR) model is illustrated 
in Fig. 1. The geometrical center is denoted by C, the mass center 
is denoted by A, 𝜃 is the angle of moving robot to the frame, 
[𝑥𝑚 𝑦𝑚] denotes the cartesian axis representing the robot to 
frame, 𝑎 is the distance between the center of mass and driving 
wheels, 2Ra is wheel diameter, and 2𝐿 is the distance between 
wheels. 

The NMR model is as follows [10]: 

q̇ = S(q)va  (1) 

M(q)q̈ + V(q, q̇) = B(q)τ − AT(q)λ  (2) 

 

Fig. 1. Model of NMR 
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where q̇  denotes the position and orientation of the 
robot, va  is the velocity of the robot in the local frame, 
M(q)q̈  is the system inertia matrix, V(q, q̇)  is the 
centripetal and coriolis matrix, B(q)  is the input 
transformation matrix, τ = [τ1 τ2]T  denotes the control 

torques of the robot, AT(q) is the constraints matrix, and λ 
is the vector of the constraint forces. S(q), M(q), V(q, q̇), 

B(q), AT(q), and λ are given as follows: 

S(q) = [
cos θ −a sin θ
sin θ a cos θ

0 1
]  

M(q) = [
m 0 ma sin θ
0 m −ma cos θ

ma sin θ −ma cos θ Ic + 2ma2
]  

V(q, q̇) = [
maθ̇2 cos θ
maθ̇2 sin θ

0

]  

B(q) =
1

Ra
[
cos θ cos θ
sin θ sin θ

L −L
]  

AT(q) = [
− sin θ
cos θ
−a

]  

λ = −m(ẋc cos θ + ẏc sin θ)θ̇  

where m is the total mass of robot and Ic is the inertia 
moment of robot. 

 

The differentiate of equation (1) can obtain: 

q̈ = Ṡ(q)va + S(q)v̇a (3) 

 

Substituting (3) to (2) yields 

M̅(q)v̇a(t) + V̅m(q, q̇)va(t) = B̅(q)τ (4) 

where, 

M̅(q) = [
m 0
0 Ic + ma2]  

V̅m(q, q̇) = [ 0 −maθ̇
maθ̇ 0

]  

B̅(q) =
1

Ra
[1 1
L −L

] τ  

B. Controller Design 

The trajectory tracking control system is designed to 
keep the position and orientation of NMR on the desired 
trajectory (Fig. 2). The kinematic controller is designed so 
that the additional speed converges to the desired speed and 

the dynamic controller is designed based on H 
performance to overcome the input constraint. Linear 
Matrix Inequalities approach is used to solve the inequality 
to obtain the state-feedback gain. This enables us to make 
the bound of the input constraint as a function of design 
parameter. In this way, we can compute the bound and 
ensure it within the limit by suitably choosing the design 
parameters. Therefore with these parameters, input 
constraint is the same as 𝜏 and the derived design law for 
input constraint is also the control law for 𝜏. 

1) Kinematic Controller 
Let there be a prescribed reference trajectory: 

ẋr = vr cos θr  

ẏr = vr sin θr  

θ̇r = ωr       (5) 

where vr is the desired linear velocity, ωr is the angular 
velocity of robot, and (xr, yr, θr) is desired reference of 
robot. 

 

The tracking error is defined as, 

[

xe

ye

θe

] = [
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

] [

xr − x
yr − y
θr − θ

] (6) 

 

The tracking error vector using (6) as follows: 

ẋe  = (ẋr − x) cos θ + (ẏr − y) sin θ − (xr −
x)θ̇ sin θ + (yr − y)θ̇ cos θ  

     =  xeω − v + ẋr cos(θr − θ) + ẏr sin(θr − θ) 

= eyω − v + vr cos θe  

ẏe  = −(ẋr − ẋ) sin θ + (ẏr − ẏ) cos θ − (xr −
x)θ̇ cos θ − (yr − y)θ̇ sin θ  

= xeω − ẋr sin(θr − θ) + ẏr cos( θr − θ) 

  = −xeω + vr sin θe  

θ̇e    = θ̇r − θ̇ = ωr − ω  (7) 

 

From (7), after some manipulation we have 

[

ẋe

ẏe

θ̇e

] = [
vr cos θe − v + ωye

vr sin θe − ωxe

ωr − ω
] (8) 

 

To design the control input, we consider the following 
Lyapunov function: 

V1 =
1

2
(xe

2 + ye
2) +

(1−cos ye)

Ky
 (9) 

where Ky is a positive constant. 

 

Differentiating V1 along the trajectories of (6) leads to 

V̇1 = ẋexe + ẏeye +
θ̇e sin θe

Ky
  

 = [(ωr + vr(Kyye + Kθ sin θe)) ye − Kxxe] xe + 

[− (ωr + vr(Kyye + Kθ sin θe)) xe + vr sin θe] ye + 

[−vr(Kyye+Kθ sin θe)] sin θe

Ky
  

= −Kxxe
2 −

vrKθ sin2 θe

Ky
 (10) 
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Fig. 2. Trajectory tracking control structure 

The kinematic controller design is as follows 

zc = [
vc

ωc
] = [

vr cos θe + Kxxe

ωr + Kyvrye + Kθvr sin θe
] (11) 

where Kx, Ky, and Kθ are design parameter. 

 

2) Dynamic Controller 
In this section a dynamic controller is designed. We 

consider the following closed loop system in state space 
describe by 

φ̇(t) = M̅φ(t) + B̅uu(t) + Bww(t)  

z(t) = Cφ(t) (12) 

 

To design the input constraint, we choose the following 
Lyapunov function: 

V(φ(t)) = φ(t)TPφ(t)  (13) 

 

where P is a positive definite matrix, and the derivative 
of V is as follows 

V̇(φ(t)) = φ̇(t)TPφ(t) + φ(t)TPφ̇(t)     (14) 

 

The stability condition of the closed loop is given by 

 [
M̅TP + PA + KTB̅u

T
P − PB̅uK PBw

Bw
TP 0

] < 0  (15) 

 

For the application of H performance, we need to 
consider this inequality 

V̇(φ(t)) + z(t)Tz(t) − γ2w(t)Tw(t) < 0  (16) 

 

After some manipulation of Schur Complement in 

Linear Matrix Inequalities, the H  performance becomes 

[
M̅Q + QM̅T − B̅uY − YTB̅u

T
Bw QCz,i

T

Bw
T −γ2I 0

Cz,iQ 0 −I

] < 0  (17) 

 

If matrix Q > 0, then the system can be stable with 
disturbance attenuation of w(t) on the performance output 
z(t) less than γ. 

The system in addition to comply the H performance 
is also designed so that the input is constrained as: 

‖−Kφ(t)‖ ≤ ‖u(t)‖ ≤ umax (18) 

 

To simply the input constraint, the following 
inequalities from (16) becomes 

∫ dV(φ(t))
T

0
+ ∫ z(t)Tz(t)dt

T

0
− γ2 ∫ w(t)Tw(t)

T

0
dt < 0  

      V(φ(T)) + ∫ z(t)Tz(t)dt
T

0

< V(x(0)) + γ2 ∫ w(t)Tw(t)
T

0

dt 

V(φ(t)) ≤ V(φ(0)) + γ2 ∫ w(t)Tw(t)dt
T

0
  

V(φ(t)) ≤ β  (19) 

 

Deriving Linear Matrix Inequalities for the input 
constraint u(t) can be done as follows 

‖−Kφ(t)‖ ≤ umax  

φ(t)TKTKφ(t) ≤ umax
2  

1

umax
2 φ(t)TKTKφ(t) ≤ 1 (20) 

 

Substitute (19) to (20) will obtain: 

1

umax
2 φ(t)TKTKφ(t) −

1

β
φ(t)TPφ(t) ≤ 0  

φ(t)T [
P

β
−

1

umax
2 KTK] φ(t) ≥ 0  

[
P

β
−

1

umax
2 KTK] ≥ 0 (21) 

 

Applying Schur Complement, pre-multiplying and 
post-multiplying Linear Matrix Inequalities with matrix P-

1, the (21) becomes 

[
−Q −YT

−Y −
umax

2

β

] < 0                 (22) 

where Q = P−1 and Y = KP−1. 

 

If the Linear Matrix Inequalities is feasible, then the 
state-feedback gain is 

K = YP   (23) 
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III. RESULTS AND ANALYSIS 

In this chapter, several simulations and experimental 
studies will be performed to determine the effectiveness of 
the controller designed in the previous section using 
MATLAB SIMULINK. We tested it with two trajectories, 
circle trajectory and square trajectory square. The system 
performance will be tested for each trajectory with external 
disturbance. We use white noise as disturbance with mean 
zero and variance 0.001. 

The main physical parameters of a NMR as follows: 
m = 12 kg, L = 0.2 m, a = 0.05 m, Ra = 0.075 m, Ic =
5  kg.m2. The simulation consists in tracking with 
semimajor axis 20 m and semi minor axis 0.1 m. The 
sampling time is chosen as T = 0.01 second that implies 
the Linear Matrix Inequalities optimization problem is 
solved at each 0.01 second and updated with actual state 
and actual model. 

 

Fig. 3. White noise as disturbance 

 For the H performance the torque saturation bound 
umax = ±0.6  Nm and we choose β = 0.1  γ = 6.4. The 
optimization problem feasible, hence it is guaranteed to 
respect input constraint. 

The variable matrix P and Y for the simulation were 
found as follows respectively: 

P = [11.9663 −0.5740
−0.5740 1.0438

]  

Y = [0.4057 0.0349
0.0349 −1.7848

]  

and the state-feedback gain is 

K = [4.8343 −0.1964
1.4421 −1.8830

]  

 

First simulation is performed on a circle trajectory with 
desired trajectory xr = 19 sin t  dan yr = 19 cos t  that 
shows in Fig. 4. The linear velocity is 0.8 m/s and the 
angular velocity is 0.1 m/s. The results of the control input 
are shown in the Fig. 5 where the magnitude of the torques 
are less than ±0.6 Nm and perfect tracking is achieved. 
Using (18) as input constraint make the steady state of error 
are close to zero with error leading 0.0068 m and error 
lateral 0.0105 m. 

 

Fig. 4. Circle trajectory with tracking with disturbances 

 

Fig. 5. The torque of circle trajectory 

 

Fig. 6. Error of circle trajectory with disturbance 

The second simulation is performed in a square 
trajectory that shown in Fig. 7. The linear velocity is 0.5 
m/s and the angular velocity is 0.1 m/s. The control input 
on the square trajectory test is shown in Fig. 8 and the 
control signal magnitudes are still less than ±0.6 Nm. The 
control input oscillates because of the presence white noise 
as the external disturbance. The tracking error cannot 
converge to zero which means that there is still an error 
even though the magnitude is very small. The error leading 
is 0.0095 m and error lateral is 0.0106 m. 
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Fig. 7. Square trajectory tracking with disturbances 

 

Fig. 8. The torque of square trajectory 

 

Fig. 9. Error of square trajectory with disturbances 

IV. CONCLUSIONS 

 In this paper, we have proposed a control system to 
solve tracking problems in Nonholonomic Mobile Robot 
(NMR) with input constraint and external disturbance. In 
order to overcome the input constraint of mobile robot, we 
designed kinematics controller so that additional speed 
converges to desired speed and based on dynamics model 
we designed controller with 𝐻∞ performance where Linear 
Matrix Inequalities optimization is used to solve the 
inequalities of Lyapunov. Simulations result show that the 
design controller can perform tracking according to desired 
trajectory with average tracking error is 0.009 m and the 
magnitude of the torques are less than ±0.6 Nm. 
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