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 Abstract – Agent-based source seeking problem is 

addressed in this paper. This problem is relevant in, e.g., in 

hazardous gas leak in a chemical disaster.  In the cooperative 

search, agents develop a formation to effectively search the 

source by communicating one to another via a 

communication topology. The source, or the search target, is 

represented by a scalar field psi which might describe a 

temperature level, hazardous concentration of substances or 

vapor. Every agent has the information on its own position 

and the value of psi at any instance. The agents are identical 

modeled as single and double integrator. Consensus filter is 

used to control the agent formation and comparison three 

types of gradient estimation are employed to search the 

source.  Experiments show that the proposed schemes give 

good performance to solve cooperative search for source 

seeking problem. 

 
Keywords: cooperative source seeking, source seeking, 

formation control, gradient approximation.  

 

I.  INTRODUCTION 

 The problem of cooperative search for source seeking 

is still an interesting problem. There are publications in the 

literature on that problem that contribute to different 

cooperative search methods, different schemes, practical 

implementations with different kind of plants, e.g., 

unmanned aerial vehicles or mobile robots, to name some 

of common applications [1] 

 Source seeking algorithm is designed to drive single or 

multi agents to a source, where the source is represented by 

the scalar field signal  and can be measured by all of 

agents. As the gradient of signal  is measured, gradient 

climbing algorithm can be developed [2]. In this case, 

gradient approximation can be used from the distributed 

measurement of  from the agents. 

 The first case, all measurements are performed by 

single agent [5] [6] as the position change in every 

instance. In this case, approximation can be done at least 

from two measurements from two different positions. 

Depending on the sensitivity of the sensor, the agent might 

need to move sufficiently far to obtain the gradient to 

converge to the source, but possibly with relatively large 

delay. In case no gradient can be computed, the agent will 

be stuck. The second case, multi agents cooperate [7] [8] 

to measure values of   from different position 

simultaneously [3]. In this case, the search should be better 

with less possibility of stuck because of the multiple  

 

measurements of  are available at every instant of 

gradient computation. 

 In this paper, we focus on comparison of gradient 

estimation on the source seeking from scalar field  by 

using distributed multi-agent with a specified formation. 

There are N identical agents that are able to communicate 

in two directions. We show that the gradient of the scalar 

field  can be approximated from the movement of the 

agents and directs the formation to the source. It is assumed 

that all agents are identical and every of them has sensors 

to measure the intensity of  and its own position and 

relative to other agents. Each agent calculate the gradient 

based on its own measurement and those from its 

neighbors. 

 The remainder of this paper is arranged as follows. In 

Section II the required background is presented consisting 

of notation and problem description. In Section III the 

derivation of gradient approximation is described. Three 

gradient approximation methods, based on the least-

squares and the directional derivative are given. Analysis 

of consensus filter is given in Section IV followed by 

simulation experiments in Section V. Conclusions from the 

simulations are given in Section VI. 

  

II.  BACKGROUND 

A. Notation 

 G = (V, E) is a directed graph to model the interaction 

of agents, where the set of vertices V = {1,2,…,N} and set 

of edges E  VV. Each vertex represents an agent and 

each edge is the communication link between two adjacent 

agents. . Edge (i,j)  E indicates that agent i sends 

information to agent j. Ni = {i  V: aij≠0} is the set of 

neighbors of agent i.  

 Adjacency matrix A = [aij]  ℝNN for aij = 1, if agent i 

and agent j  V communicate each other and aij = 0 

otherwise. Note that A is symmetric. 

 Laplacian matrix L =  ̶ A, where  = diag(A1) is a 

diagonal matrix with the degree of an agents is the diagonal 

element, namely ii = di = j aij and 1 = [1 1 1 … 1]T  ℝN 

is the vector with 1 as its elements. Right eigenvector L is 

the eigenvector from the eigenvalue 1 = 0 and L1 = 0. The 

second smallest eigenvalue 2 determines the convergence 

rate of the algorithm. |Ni| is the number of neighbors in 

heighbor set Ni, dan  is the Kronecker product. 
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B. Problem Description  

 Given a scalar field  = (r) which is a mapping  : ℝP 

 ℝ+, where p = 1, 2, or 3 and r  ℝP that defines the 

position coordinate of the agent in space. For instance, p = 

3, r = [x y z]T  ℝP. The source is found indicated by the 

maximum value of . Source seeking problem is to find 

the value of r such that the scalar field  is maximum. This 

can be formulated by the following optimization equation: 

 

r* = arg max (r) 

   

In this paper, it is assumed that (r) has only a single 

maximum and has no local maximum as well.  

 

III. GRADIENT APPROXIMATION 

 In the multi-agent based gradient approximation, each 

agent approximates its own gradient and the connected 

agents receive the approximations from its neighbors to 

compute the global gradient. We proposed three methods 

to compute the gradient approximation that based on the 

least squares.  

  

A. Approximation 1 

 Each agent i measures the intensity of  from its 

position. This is denoted by i = (ri), where i = 1, 2, 3, … 

N. Given the position of agent j, rj, that is close to agent i, 

ri, the approximation can be calculated by using the Taylor 

series. The approximation of j at ri is given by: 

 

 (rj)  (ri) + (rj – ri)T 𝒈̂(ri) (1) 

 

Agent j is neighboring agent that sends information to 

agent i, 𝒈̂(ri) is estimated gradient calculated by agent i. For 

instance, p = 3, 𝒈̂(ri) = [𝒈̂𝒙(ri) 𝒈̂𝒚(ri) 𝒈̂𝒛(ri)]T. If agent i has 

|Ni| neighbors, (1) becomes 

[
 
 
 

𝜓(𝑟1) − 𝜓(𝑟𝑖)

𝜓(𝑟2) − 𝜓(𝑟𝑖)
⋮

𝜓(𝑟|𝑁𝑖|
) − 𝜓(𝑟𝑖)]

 
 
 

=

[
 
 
 
 

(𝑟1 − 𝑟𝑖)
𝑇

(𝑟2 − 𝑟𝑖)
𝑇

⋮

(𝑟|𝑁𝑖|
− 𝑟𝑖)

𝑇
]
 
 
 
 

𝒈̂(𝑟𝑖) 

   𝑏𝑖 = 𝐴𝑖𝑔̂𝑖  (2) 

 

where bi  ℝ|Ni|1, Ai  ℝ|Ni|p, dan 𝒈̂𝒊  ℝp1. This problem 

can be solved by using the least squares method: 

 

   𝑔̂𝑖 = (𝐴𝑖
𝑇𝐴𝑖)

−1𝐴𝑖
𝑇𝑏𝑖  (3) 

 

B. Approximation 2  

 Normalization of (1) with the relative distance between 

agents and multiply it with the directed unit vector between 

agent i and j to become: 

 

  
𝜓(𝑟𝑗)−𝜓(𝑟𝑖)

‖𝑟𝑗−𝑟𝑖‖

𝑟𝑗−𝑟𝑖

‖𝑟𝑗−𝑟𝑖‖
=

(𝑟𝑗−𝑟𝑖)
𝑇
𝒈̂(𝑟𝑖)

‖𝑟𝑗−𝑟𝑖‖

𝑟𝑗−𝑟𝑖

‖𝑟𝑗−𝑟𝑖‖
  (4) 

 

Equation (4) can be transformed into: 

 

 
𝜓(𝑟𝑗)−𝜓(𝑟𝑖)

‖𝑟𝑗−𝑟𝑖‖
2 (𝑟𝑗 − 𝑟𝑖) =

(𝑟𝑗−𝑟𝑖)
𝑇
⨂(𝑟𝑗−𝑟𝑖)

‖𝑟𝑗−𝑟𝑖‖
2 𝒈̂𝒊  (5) 

 

where wji is the weighting factor between agent i and agent 

j, defined by wji = 1/||rj – ri||2. Equation (5) can be 

manipulated to add a weighting factor to each agent to form 

a weighting matrix  Wi = diag{wji}. This is a |Ni||Ni| 

diagonal matrix containing weighting factors to all |Ni| 

agents that send information to agent i. The related 

matrices are written as: 

 

𝑊𝑖 =

[
 
 
 
 

1

‖𝑟1−𝑟𝑖‖
2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

‖𝑟|𝑁𝑖|
−𝑟𝑖‖

2

]
 
 
 
 

  

𝑏𝑖 =

[
 
 
 
 

(𝜓(𝑟1) − 𝜓(𝑟𝑖))(𝑟1 − 𝑟𝑖)

(𝜓(𝑟2) − 𝜓(𝑟𝑖))(𝑟2 − 𝑟𝑖)

⋮

(𝜓(𝑟|𝑁𝑖|
) − 𝜓(𝑟𝑖)) (𝑟|𝑁𝑖|

− 𝑟𝑖)]
 
 
 
 

 

𝐴𝑖 =

[
 
 
 
 

(𝑟1 − 𝑟𝑖)
𝑇⨂(𝑟1 − 𝑟𝑖)

(𝑟2 − 𝑟𝑖)
𝑇⨂(𝑟2 − 𝑟𝑖)
⋮

(𝑟|𝑁𝑖|
− 𝑟𝑖)

𝑇
⨂(𝑟|𝑁𝑖|

− 𝑟𝑖)]
 
 
 
 

 

 

and the least squares formulation  can compactly written 

as: 

 

   𝑊𝑖𝐴𝑖𝑔̂𝑖 = 𝑊𝑖𝑏𝑖   
 

By using the least squares: 

 

  𝑔̂𝑖 = (𝐴𝑖
𝑇𝑊𝑖

2𝐴𝑖)
−1𝐴𝑖

𝑇𝑊𝑖
2𝑏𝑖  (6) 

 

C. Approximation 3  

  

 This approximation can be computed as the average of 

the slope in the direction of normalization vector, 

expressed as: 

 

   𝑔̂𝑖 =
1

|𝑁𝑖|
∑

𝜓(𝑟𝑗)−𝜓(𝑟𝑖)

‖𝑟𝑗−𝑟𝑖‖
2 (𝑟𝑗 − 𝑟𝑖)𝑗𝜖𝑁𝑖

  (7) 

 

 To compare these approximations, the Mean Squared 

Error (MSE) and the Root Mean Squared Error (RMSE) 

will be calculated and analyzed on the simulation section. 

The formulation of MSE is  
1

𝑛
∑ (𝑟𝑜𝑖 − 𝑟𝑗𝑖)

2𝑛
𝑖=1   and RMSE 

is √(
1

𝑛
∑ (𝑥𝑜𝑖 − 𝑥𝑗𝑖)

2𝑛
𝑖=1 ), where r is position ([x y z]T), o 

is the original gradient, j-approximation, i-datum, and n 

number of data. 

 

IV. GRADIENT OF THE CONSENSUS FILTER  

 We propose a consensus algorithm  that modifies one 

in [9]. 
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 𝑔̇𝑖 = 𝛽 ∑ 𝑎𝑖𝑗𝑒𝑔𝑖𝑗
(𝑡) + 𝛽(1 + 𝑑𝑖)(𝑔̂𝑖(𝑡) − 𝑔𝑖(𝑡))𝑗𝜖𝑁𝑖

  (8) 

 

where 

 𝑒𝑔𝑖𝑗
(𝑡) = (𝑔̂𝑖(𝑡) − 𝑔𝑖(𝑡)) − (𝑔̂𝑗(𝑡) − 𝑔𝑗(𝑡)) 

 𝑒𝑔𝑖𝑗
(𝑡) = (𝑔̂𝑖(𝑡) − 𝑔𝑗(𝑡)) − (𝑔̂𝑖(𝑡) − 𝑔𝑗(𝑡)) 

 

and   1 is a control parameter to tracking performance of 

the gradient as the agent moves. By using the definition of 

the Laplacian graph, the following equation is obtained: 

 

  𝑔̇ = −𝛽(𝐼𝑁⨂𝐼𝑝 + ∆⨂𝐼𝑝 + 𝐿⨂𝐼𝑝)𝑔   

   +𝛽(𝐼𝑁⨂𝐼𝑝 + ∆⨂𝐼𝑝 + 𝐿⨂𝐼𝑝)𝑔̂  (9) 

 

so that the previous equation becomes:  

 

  𝑔̇ = 𝛽(−𝐴𝑔 + 𝐴𝑔̂)   

 

V. SIMULATION RESULTS 

 For the simulation experiment, the following scalar 

field function is used: 

 

𝜓(𝑥, 𝑦) = 50𝑒−
(𝑥−65)2

1800
−

(𝑦−70)2

11250 + 50𝑒−
(𝑥−65)2

16200
−

(𝑦−70)2

1250  
 

and the original gradient is obtained analytically from the 

gradient 𝜓(𝑥, 𝑦): 

∇𝜓(𝑥, 𝑦) =
𝜕𝜓

𝜕𝑥
𝑖 +

𝜕𝜓

𝜕𝑦
𝑗 

where  

 
𝜕𝜓

𝜕𝑥
= −

𝑥 − 65

900
𝑒−

(𝑥−65)2

1800
−

(𝑦−70)2

11250

−
𝑥 − 65

8100
𝑒−

(𝑥−65)2

1800
−

(𝑦−70)2

11250  

𝜕𝜓

𝜕𝑦
= −

𝑦 − 70

5625
𝑒−

(𝑥−65)2

1800
−

(𝑦−70)2

11250

−
𝑦 − 70

625
𝑒−

(𝑥−65)2

1800
−

(𝑦−70)2

11250  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. rx-ry gradient approximation result  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. rx gradient approximation result  

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. ry gradient approximation result 

 

Each agent is an identical agent with single integrator 

model.  

 
TABLE 1. COMPARISONS OF MSE, RMSE VS APPROX 

Statistics ri Approx1 Approx2 Approx3 

MSE rx 0.2253 0.2538 1.0332 

 ry 0.3375 0.5515 0.5556 

 rT 0.5628 0.8053 1.5888 

RMSE rx 0.4747 0.5038 1.0164 

 ry 0.5810 0.7426 0.7454 

 rT 1.0567 1.2464 1.7618 
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Fig. 4. Error rx  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Error ry  
 

 The MSE and RMSE of the error of error rx, ry dan rT 

with respect to the original gradient of each approximation  

method are shown in Table 1. From the table, it can be seen 

that Approximation 1 is better that the other approximation 

methods because of the smaller MSE and RMSE. 

However, Approximation 2 and Approximation 3 are also 

sufficiently good since Figure 1 to Figure 6 show the 

approximations is close enough to the original gradient.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Error rtotal  

 

   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Trajectory of the formation from initial condition to the 

source. 
 

 

 

 Figure 1 show the evolution of the heading of the agent 

from the initial value until the source is located. Figure 1 

can be detailed by Figure 2 and Figure 3 with respect to 

time function of rx dan ry. 

 Figure 4 and Figure 5 are respectively the error of rx 

and ry with respect to the original gradient. Figure 6 is the 

combination between Figure 4 and Figure 5. 

 

Figure 7 and Figure 8 shows the trajectory of the 

cooperative multi-agent from the initial condition to the 

source by using all three gradient approximation methods. 
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Fig. 8. Trajectory of the formation in 3D  
 

 

VI. CONCLUSION 

 Three gradient approximation methods have been 

presented in this paper. All methods are based on the 

solution of the least-squares method and applied to source 

seeking problem by a multi-agent system. 

 From the simulation it can be concluded that the 

experiment schemes by using the gradient estimation is 

interesting and has a promising for further development 

and applications. Compared to Approximation 2 and 

Approximation 3, Approximation 1 is better with respect 

to the values of MSE and RMSE. However, the other 

approximations give sufficiently results as well.  

 For further research, scalar field functions containing 

local maximums can be used to have a more complex 

problem. More complex schemes can also be developed to 

tackle more problems. 
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