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Abstract— This research addresses the development of an 

advanced decision-making system for a wheeled soccer robot, 

focusing specifically on the critical task of determining the 

optimal aiming angle for goal scoring. The primary objective is 

to enhance the robot's ability to accurately identify and target 

unguarded areas of the goal. To achieve this, a novel approach 

is employed, which integrates depth and RGB image data to 

predict the position of unguarded spaces within the goal area. 

This prediction is facilitated by the use of the Intel Realsense 

D435i depth camera, which captures both RGB and depth 

images simultaneously. 

The methodology involves processing the combined image 

data to estimate the location of unguarded areas, subsequently 

converting these locations into precise aiming angles for the 

robot. The effectiveness of this technique has been rigorously 

tested across 60 different test points. The results demonstrate a 

high level of accuracy, with the system successfully predicting 

the unguarded area in all test cases and achieving an average 

error rate of only 1.3% in the coordinates predicted. 

This research not only proves the feasibility of using 

integrated image data for robotic decision-making in dynamic 

sports environments but also sets the groundwork for further 

improvements in autonomous robotic interactions in complex, 

real-world settings. 

 

Keywords— aiming system, depth image, wheeled soccer 

robot.  

I. INTRODUCTION 

Robotic technology has increasingly become an integral 
part of human lives, enhancing various sectors including 
medicine [1], [2], social interactions [3],[4], and industrial 
processes [5],[6]. Recent advancements in artificial 
intelligence have enabled robots to perform complex tasks 
traditionally exclusive to humans [3]. This progression has 
not only improved the capabilities and efficiency of robots 
but has also sparked excitement among robotics enthusiasts 
worldwide. 

This enthusiasm has led to the creation of various global 
robotics events, among which ROBOCUP stands out. 
ROBOCUP features multiple divisions of robot 
competitions, with the Middle Size League (MSL) being its 
premier division in robotic soccer. These events not only 
showcase the cutting-edge developments in robotic 
technology but also promote innovation and collaboration 
among experts in the field. 

The Middle Size League (MSL) is a competition 
featuring autonomous wheeled soccer robots. These robots 
utilize multiple motors as their primary movement 

mechanism. The autonomous nature of these robots presents 
significant challenges for robotics enthusiasts who are tasked 
with developing sophisticated decision-making capabilities. 
These capabilities enable the robots to determine their 
actions dynamically, based on real-time environmental 
inputs. 

One of the main challenges in developing these soccer 
robots is designing an effective goal-scoring mechanism. 
Key aspects that need to be considered include the shooting 
mechanism, which enables the robot to kick the ball, and the 
aiming mechanism, which determines the direction of the 
shot. Both components are crucial for the robot's 
performance in accurately targeting and scoring goals, 
necessitating precise engineering and integration. 

This research will focus on the aiming mechanism of 
soccer robots, which is critical for successful goal scoring. 
The primary objective of this mechanism is to identify 
unguarded spaces within the goal area. These identified 
spaces then serve as references for the system to determine 
the most effective aiming point. By precisely targeting these 
unguarded regions, the robot can significantly increase its 
chances of scoring. 

Previous research on goal detection for Middle Size 
League (MSL) robots has predominantly relied on RGB 
color detection [7], [8]. While these studies have yielded 
satisfactory results, their reliance on color can lead to 
inaccuracies under varying lighting conditions. To address 
this limitation, this research proposes the use of a depth 
camera to enhance goal detection accuracy by incorporating 
depth information. The Intel Realsense D435i has been 
selected for this purpose, as prior studies have confirmed its 
effectiveness in accurately perceiving distances [9]–[11]. By 
integrating depth data with RGB, this approach aims to 
create a more robust and reliable goal detection system, less 
susceptible to environmental changes. 

The research will utilize a combination of depth and 
RGB imagery to accurately identify the region of interest 
within the goal. These images will provide a comprehensive 
view of the goal area, allowing for detailed analysis. Using 
this data as a foundation, the system will employ a 
straightforward elimination process to pinpoint the 
unguarded areas of the goal. This method systematically 
excludes regions blocked by defenders or other obstacles, 
ensuring that the remaining areas are optimal targets for 
scoring. 
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The remainder of this paper is organized as follows: 
Section 2 provides an overview of the devices and 
terminology used, as well as a detailed description of the 
overall system employed in this research. Section 3 presents 
the results obtained from various tests conducted during the 
study. Finally, Section 4 offers conclusions drawn from the 
research findings and discusses potential avenues for future 
work. 

II. METHODOLOGY 

A. IRIS Robot 

This research will be implemented using a robot 

developed by the IRIS team from the Sepuluh Nopember 

Institute of Technology, which competes in the Middle Size 

League (MSL). The robot as shown in Fig. 1, is equipped 

with four omnidirectional wheels as its main actuators, 

allowing it to move in any direction across the ground 

surface. For shooting, it utilizes a high-torque brushless DC 

motor, enabling powerful shots. Its frame, constructed from 

stainless steel, is designed to withstand collisions with other 

robots, enhancing its durability in competitive settings. 

Additionally, the robot is equipped with an omnidirectional 

camera mounted on top of its frame. This camera is essential 

for capturing the surrounding environment, facilitating 

robust decision-making processes based on visual data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. IRIS Robot 

 
For the programming framework, the IRIS team utilizes 

the Robot Operating System (ROS) to manage all processes 
within the robot [12]. ROS is a robust software framework 
designed for robotic applications, capable of supporting 
simultaneous multi-threaded processes. It comprises a 
diverse array of tools, which provides extensive 
functionality to developers. A notable feature of ROS is its 
multilingual capability, allowing it to support multiple 
programming languages within a multi-threaded 
environment. Additionally, as an open-source platform, 
ROS facilitates easy development and customization by the 
global research and development community [13]. 

To effectively comprehend its surroundings, the robot 
requires the capability to estimate the positions of nearby 

objects. For this purpose, a fixed coordinate system is 
essential to serve as a reference. Fig. 2 illustrates the 
coordinate system adopted by the IRIS robot. In this system, 
the field length is represented by the Y-axis,  while  the field  

 

 

 

 

 

 

 

 

Fig 2. Field Coordinate System 

width is represented by the X-axis. Throughout this 
research, this specific arrangement will be referred to as the 
field coordinate system. 

To enhance the robot's ability to accurately determine 

the position of objects, it is crucial to estimate its own 

location within the field. This estimation is achieved using 

rotary encoders attached to the bottom of the robot. Fig. 3 

illustrates the placement of these encoders. Each encoder is 

paired with an omnidirectional wheel, allowing the robot to 

calculate its current position based on displacement from an 

initial reference point. The displacement is derived from the 

number of rotations recorded by the rotary encoder, as 

specified in Equation (1). 

 

      (1) 

 

(x,y) :  estimated robot position 

RE0 :  displacement of left rotary encoder 

RE1 :  displacement of right rotary encoder 

 

 
 

Fig. 3. Rotary Encoder Placement (Green Part) 

B. Intel Realsense D435i 

The choice of depth camera is critical for the success of 
this research, as it significantly influences the outcome. The 
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camera must meet several specific requirements to function 
effectively within the system. First, it must have a fast 
capture rate; the minimum required is 30 frames per second 
to ensure synchronization with the robot's primary camera. 
Second,  the camera must be  capable of adapting to  various  

 

 

 

 

 

 

Fig. 4 Intel Realsense D435i 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Depth Camera Placement 

lighting conditions. This is crucial due to potential 
variations between the lighting in the test environment and 
the actual event venue. Finally, the camera needs to be 
compact enough to be integrated seamlessly into the IRIS 
robot's design. 

Based on these criteria, the Intel Realsense D435i (Fig. 
4) was selected as the depth camera for this research. It 
offers a high capture rate of up to 90 frames per second, far 
exceeding the minimum requirement of 30 fps. This 
capability ensures optimal synchronization with the robot’s 
other cameras. Additionally, its design is well-suited for 
both indoor and outdoor environments, addressing the need 
for adaptability under different lighting conditions. 
Furthermore, its compact chassis is ideal for integration, 
fitting neatly within the IRIS robot’s frame. 

This depth camera (Fig. 5) differs from others due to its 
inclusion of a secondary sensor that enhances its ability to 
perceive its surroundings. This sensor is a 6-DOF (Degrees 
of Freedom) Inertial Measurement Unit (IMU), which aids 
in accurately detecting motion and orientation. The 
coordinate system utilized by the IMU is detailed in Fig. 6 
and will be referred to throughout this research as the 
camera coordinate system. 

C. System Overview 

The architecture of the research system encompasses 
several interconnected processes, collectively depicted in 
Fig. 7. At the heart of the system lies the image processing 
block. This crucial component processes both depth and 
RGB images captured by the depth camera to identify 

unguarded areas within the goal. The output of this block is 
the pixel coordinates of these areas. These coordinates are 
then forwarded to the coordinate converter block, which 
computes the aiming angle necessary for the robot to target 
these unguarded zones effectively. 

 

 

 

 

 

 

 

 

Fig. 6  Intel Realsense D435i Coordinate System [11] 

 

 

 

 

Fig. 7  Block Diagram of System 

D. Depth Camera Block 

Prior to initiating the image processing algorithm, the 
raw images captured by the depth camera require 
preprocessing. This step is necessary due to the differing 
fields of view between the depth and RGB images. As 
illustrated in Fig. 8, objects appear smaller in the depth 
image than in the RGB image, a discrepancy resulting from 
their varied fields of view. This disparity leads to 
inconsistent object coordinates across the two image types. 
To address this issue, the images must be aligned to ensure 
they share the same field of view. Fig. 9 demonstrates the 
outcome of this alignment, showing that objects now appear 
the same size in both images. This alignment facilitates 
synchronized coordinates between the depth and RGB 
images, essential for accurate further processing. 

E. Image Processing Algorithm 

To estimate the position of the unguarded area, the 
system processes the image data obtained from the depth 
camera. This processing involves a series of steps, each 
designed to identify and analyze the relevant sections of the 
image where no obstacles or defenders are present. The 
detailed workflow of this image processing sequence is 
depicted in Fig. 10. 

 

 

 

 

 

Fig. 8 Diffrence of Field of View 

 

 



Journal on Advanced Research in Electrical Engineering, Vol. 8, No. 2, Jul. 2024 43 

 

 

 

 

 

 

 

 

 

Fig 9 Image Processing Block Diagram 

The primary goal of the image processing stage is to 
enhance the recognition of the goal and the goalkeeper 
based on color and distance from the robot. To achieve this, 
the RGB image in Fig. 11 is employed to filter objects by 
color, identifying those that match the typical colors of the 
goal and the goalkeeper. The results of this color-based 
filtering process are depicted in Fig. 12 and Fig. 13. 
Specifically, Fig. 12 isolates objects in white, which are 
indicative of the goal, while Fig. 13 focuses on objects in 
black, corresponding to the goalkeeper. 

 

Fig. 10 RGB Goal Image 

 

Fig. 11  Goal Thresholding (White Threshold) 

 

Fig. 12 Goal Keeper Thresholding (Black Threshold) 

As previously noted, this research utilizes both RGB and 

depth images to enhance goal recognition. The system 

extracts distance information from the depth image, which 

complements the color data from the RGB image. Unlike 

the RGB image, which is filtered by color, the depth image 

is filtered based on distance values of each pixel. This 

selective filtering process isolates objects within a specific 

range of distances, determined by the relative positions of 

the robot and the goal. The method for calculating this 

distance range is outlined in Equation (2). Fig. 14 displays 

the result of this filtering, showing only objects that fall 

within the predetermined distance range. 

 

 (2) 

  

(xr, yr) : robot coordinate 

(xg, yg) : goal coordinate 

rg : distance refrence 

offset : variable to control range 

 

 

Fig. 13  Distance Filtering 

Although Figures 14 and 12 successfully isolate goal-
related objects, they still contain a considerable amount of 
noise from other detected objects. To mitigate this, the 
system combines these images to reduce noise, as shown in 
Fig. 15. This combined image serves as the primary 
reference for goal recognition, facilitating more accurate 
detection of the goal position. However, identifying the 
unguarded area within the goal requires an additional step. 
This unguarded area is determined through a simple 
elimination process, which involves subtracting the area 
occupied by the goalkeeper from the total goal area. This 
method effectively isolates the unguarded sections of the 
goal, essential for accurate shot targeting. 
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Fig. 14 Combined Threshold 

The results of the goal recognition process are displayed 
in Fig. 16. In this image, a blue rectangle outlines the 
detected goal area, indicating where the goal is located. The 
goalkeeper is represented by a red object, highlighting its 
position within the goal. The unguarded area, where no 
obstacles or goalkeeper are present, is delineated by a green 
box. This visual representation clearly distinguishes 
between the goal, the goalkeeper, and the unguarded 
sections, allowing for accurate assessment and targeting 
during gameplay. 

 

Fig. 15 Final Result 

F. Coordinate Converter Block 

The final output from the image processing block is the 
pixel coordinate of the unguarded area. To effectively utilize 
this data for targeting, these pixel coordinates must be 
converted into real-world coordinates. This conversion is 
achieved using the Intel Realsense function 'deproject pixel 
to point,' which translates pixel dimensions into spatial 
measurements. 

Although the depth camera has the capability to 
calculate 3D coordinates, this system utilizes only the 2D 
coordinates corresponding to the field coordinate system, 
which comprises the X and Y axes. The values for X and Y 
are calculated using Equations (3) and (4). Employing these 
equations ensures that the aiming angle is confined within 
the goal area, thereby enhancing the accuracy of goal-
targeting actions. 

                                                                                   (3) 

                                                                                   (4)  

(X, Y) :  Estimated unguarded position 

A : pixel coord. of unguarded area (Point A, Error! 
Reference source not found.) 

B : left most part goal area (Point B, Error! 
Reference source not found.) 

C : right most part goal area (Point C, Error! 
Reference source not found.) 

D : nearest depth value 

 

Fig. 16 Goal Point of Interest 

III.  TESTING AND RESULT 

A. Coordinate Detection Test 

The research includes several tests to verify the 
accuracy of the system, conducted in distinct phases. The 
initial phase involves a coordinate detection test. During this 
test, an object measuring 43 cm in width and 80 cm in 
height is placed at various locations within the testing room 
in front of the depth camera. The Intel Realsense camera 
then estimates the coordinates of the object, which are 
subsequently compared with the actual, measured 
coordinates to assess accuracy. Figs 18 and 19 display these 
comparisons between the real-world and estimated 
coordinates. 

The results of this test indicate that the average error in 
the X-axis is 5.7%, and in the Y-axis, it is 1.49%. Both 
errors fall within the acceptable error margin of 10%, 
demonstrating the system’s capability to reliably estimate 
positions within a tolerable range of accuracy. 

 

 

 

 

 

 

 

 

Fig. 17 Comparison Graph for X Axis 

 

Fig. 18 Comparison Graph for Y Axis 
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Fig. 19 demonstrates a noticeable increase in error for 

objects positioned more than 300 cm away from the camera. 
This observation is consistent with the specifications 



Journal on Advanced Research in Electrical Engineering, Vol. 8, No. 2, Jul. 2024 45 

 

provided by the Intel Realsense D435i [14]. The increased 
error at greater distances aligns with the known limitations 
of the camera’s sensing capabilities, as detailed in the 
manufacturer’s documentation. 

 

Fig. 19 RMS Error to Distance Graph [15] 

B. Width Measurement Test 

As detailed in Part F of the methodology section, to 
accurately estimate the real-world coordinates of the 
unguarded goal area, the system compares the distances 
between the leftmost and rightmost points of the goal area. 
To validate the accuracy of this method, a specific test is 
conducted. In this test, the depth camera estimates the 
distance between the rightmost and leftmost coordinates of a 
single object, similarly to the coordinate detection test. The 
actual width of the object used in this test is 43 cm. Fig. 21 
presents a comparison between the actual width and the 
width estimated by the camera. The results indicate that the 
average error in this test is 3.14%. 

 

Fig. 20 Actual and Estimated Width Comparison 

C. Unguarded Area Detection Test 

This final test is crucial for confirming the overall 
functionality and accuracy of the system. In this test, the 
system is positioned at various locations around the testing 
area to detect the unguarded goal area. The unguarded areas 
detected by the system are then compared with the actual 
unguarded areas to compute the overall system accuracy. 
Additionally, this test evaluates whether the system 
successfully estimates the aiming angle. Success is defined 
by the estimated coordinates falling within the actual range 
of the unguarded area. To provide a clear representation of 
the test outcomes, Table 1 displays a selection of test data 
along with the results. The comprehensive data indicates 
that the average error across all tests is 1.3%, confirming 
that the system consistently and accurately identifies the 
position of unguarded areas from all test points. 

 

Table 1 Final Test Result 
Pos 

x 

Pos 
y 

Estimated 
X 

real 
x 

Left 
goal 

right 
goal 

Error 
(%) 

Success 

400 600 362.185 365 300 430 0.77 1 

490 630 355.856 365 300 430 2.50 1 

310 630 365.625 365 300 430 0.17 1 

400 600 343.333 350 300 400 1.90 1 

490 630 339.669 350 300 400 2.95 1 

310 630 350.406 350 300 400 0.11 1 

400 600 343.333 350 300 400 1.90 1 

400 600 440.678 435 370 500 1.30 1 

490 630 439.2 435 370 500 0.96 1 

310 630 446.341 435 370 500 2.60 1 

400 690 441.429 435 370 500 1.47 1 

400 600 454.622 450 400 500 1.02 1 

490 630 454.098 450 400 500 0.91 1 

310 630 460.976 450 400 500 2.43 1 

 

Pos x             : System position in X axis 

Pos Y             : System position in Y axis 

Estimated X       : Estimated unguarded position in X axis 

Real X              : Actual unguarded position in X axis 

Left/Right Goal  : Unguarded area range 

Error                   : Diff. for actual and estimated position 

III. CONCLUSSION 

The first series of tests validated the ability of the Intel 

Realsense D435i depth camera to estimate positions with an 

average error of 5.7% on the X-axis and 1.49% on the Y-

axis, well below the acceptable error margin of 10%. These 

results affirm the reliability of the Intel Realsense D435i for 

positional estimation within the scope of this research. 

The width measurement test assessed the reliability of 

the method used to calculate the unguarded area of the goal. 

With an average error of 3.14% in estimated width, the Intel 

Realsense D435i demonstrated high reliability, supporting 

the conclusion that the method for calculating the unguarded 

goal area is dependable and suitable for application. 

The final test aimed to measure the accuracy of the 

entire system, evaluating both the error in estimated 

coordinates and the system's success rate. The results 

revealed an impressively low average error of 1.3% in 

coordinate estimation and a 100% success rate. The perfect 

success rate can be attributed to the relatively wide 

unguarded area, which ensures that even with some 

coordinate estimation errors, the targeted coordinates still 

fall within the actual range. These findings confirm that the 

system operates effectively as intended. 

In summary, the conducted tests demonstrate that the 

overall system is highly accurate and reliable for its 

intended application, confirming the efficacy of the Intel 

Realsense D435i and the methodologies employed in this 

research. 

IV.   FUTURE RESEARCH 

The research has employed a novel method to calculate the 

position of the unguarded area within the goal, which has 

proven to be relatively effective. However, there is 

considerable potential for enhancement. A primary 

limitation of the current approach is its dependence on 

accurately detecting the rightmost and leftmost parts of the 

goal to estimate the position of the unguarded area. This 

dependency could lead to inaccuracies under certain
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conditions where these extremities are obscured or not 

distinctly visible. To advance the reliability and robustness 

of the research, developing a new method that does not rely 

on the goal's range is essential. Such an approach could 

potentially yield more consistent and accurate results across 

a variety of scenarios, thereby improving the overall 

effectiveness of the system. 
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