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Abstract— This research addresses the development of an 

advanced decision-making system for a wheeled soccer robot, 

focusing specifically on the critical task of determining the 

optimal aiming angle for goal scoring. The primary objective is 

to enhance the robot's ability to accurately identify and target 

unguarded areas of the goal. To achieve this, a novel approach 

is employed, which integrates depth and RGB image data to 

predict the position of unguarded spaces within the goal area. 

This prediction is facilitated by the use of the Intel Realsense 

D435i depth camera, which captures both RGB and depth 

images simultaneously. 

The methodology involves processing the combined image 

data to estimate the location of unguarded areas, subsequently 

converting these locations into precise aiming angles for the 

robot. The effectiveness of this technique has been rigorously 

tested across 60 different test points. The results demonstrate a 

high level of accuracy, with the system successfully predicting 

the unguarded area in all test cases and achieving an average 

error rate of only 1.3% in the coordinates predicted. 

This research not only proves the feasibility of using 

integrated image data for robotic decision-making in dynamic 

sports environments but also sets the groundwork for further 

improvements in autonomous robotic interactions in complex, 

real-world settings. 

 

Keywords— aiming system, depth image, wheeled soccer 

robot.  

I. INTRODUCTION 

Robotic technology has increasingly become an integral 
part of human lives, enhancing various sectors including 
medicine [1], [2], social interactions [3],[4], and industrial 
processes [5],[6]. Recent advancements in artificial 
intelligence have enabled robots to perform complex tasks 
traditionally exclusive to humans [3]. This progression has not 
only improved the capabilities and efficiency of robots but has 
also sparked excitement among robotics enthusiasts 
worldwide. 

This enthusiasm has led to the creation of various global 
robotics events, among which ROBOCUP stands out. 
ROBOCUP features multiple divisions of robot competitions, 
with the Middle Size League (MSL) being its premier division 
in robotic soccer. These events not only showcase the cutting-
edge developments in robotic technology but also promote 
innovation and collaboration among experts in the field. 

The Middle Size League (MSL) is a competition featuring 
autonomous wheeled soccer robots. These robots utilize 
multiple motors as their primary movement mechanism. The 
autonomous nature of these robots presents significant 
challenges for robotics enthusiasts who are tasked with 
developing sophisticated decision-making capabilities. These 
capabilities enable the robots to determine their actions 
dynamically, based on real-time environmental inputs. 

One of the main challenges in developing these soccer 
robots is designing an effective goal-scoring mechanism. Key 
aspects that need to be considered include the shooting 
mechanism, which enables the robot to kick the ball, and the 
aiming mechanism, which determines the direction of the 
shot. Both components are crucial for the robot's performance 
in accurately targeting and scoring goals, necessitating precise 
engineering and integration. 

This research will focus on the aiming mechanism of 
soccer robots, which is critical for successful goal scoring. The 
primary objective of this mechanism is to identify unguarded 
spaces within the goal area. These identified spaces then serve 
as references for the system to determine the most effective 
aiming point. By precisely targeting these unguarded regions, 
the robot can significantly increase its chances of scoring. 

Previous research on goal detection for Middle Size 
League (MSL) robots has predominantly relied on RGB color 
detection [7], [8]. While these studies have yielded 
satisfactory results, their reliance on color can lead to 
inaccuracies under varying lighting conditions. To address 
this limitation, this research proposes the use of a depth 
camera to enhance goal detection accuracy by incorporating 
depth information. The Intel Realsense D435i has been 
selected for this purpose, as prior studies have confirmed its 
effectiveness in accurately perceiving distances [9]–[11]. By 
integrating depth data with RGB, this approach aims to create 
a more robust and reliable goal detection system, less 
susceptible to environmental changes. 

The research will utilize a combination of depth and RGB 
imagery to accurately identify the region of interest within the 
goal. These images will provide a comprehensive view of the 
goal area, allowing for detailed analysis. Using this data as a 
foundation, the system will employ a straightforward 
elimination process to pinpoint the unguarded areas of the 
goal. This method systematically excludes regions blocked by 
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defenders or other obstacles, ensuring that the remaining areas 
are optimal targets for scoring. 

The remainder of this paper is organized as follows: 
Section 2 provides an overview of the devices and 
terminology used, as well as a detailed description of the 
overall system employed in this research. Section 3 presents 
the results obtained from various tests conducted during the 
study. Finally, Section 4 offers conclusions drawn from the 
research findings and discusses potential avenues for future 
work. 

II. METHODOLOGY 

A. IRIS Robot 

This research will be implemented using a robot 

developed by the IRIS team from the Sepuluh Nopember 

Institute of Technology, which competes in the Middle Size 

League (MSL). The robot as shown in Fig. 1, is equipped with 

four omnidirectional wheels as its main actuators, allowing it 

to move in any direction across the ground surface. For 

shooting, it utilizes a high-torque brushless DC motor, 

enabling powerful shots. Its frame, constructed from stainless 

steel, is designed to withstand collisions with other robots, 

enhancing its durability in competitive settings. Additionally, 

the robot is equipped with an omnidirectional camera 

mounted on top of its frame. This camera is essential for 

capturing the surrounding environment, facilitating robust 

decision-making processes based on visual data. 

 

 
Fig. 1. IRIS Robot 

 
For the programming framework, the IRIS team utilizes 

the Robot Operating System (ROS) to manage all processes 
within the robot [12]. ROS is a robust software framework 
designed for robotic applications, capable of supporting 
simultaneous multi-threaded processes. It comprises a 
diverse array of tools, which provides extensive functionality 
to developers. A notable feature of ROS is its multilingual 
capability, allowing it to support multiple programming 
languages within a multi-threaded environment. 
Additionally, as an open-source platform, ROS facilitates 
easy development and customization by the global research 
and development community [13]. 

To effectively comprehend its surroundings, the robot 
requires the capability to estimate the positions of nearby 
objects. For this purpose, a fixed coordinate system is 
essential to serve as a reference. Fig. 2 illustrates the 
coordinate system adopted by the IRIS robot. In this system, 
the field length is represented by the Y-axis,  while  the field  

 

Fig 2. Field Coordinate System 

width is represented by the X-axis. Throughout this research, 
this specific arrangement will be referred to as the field 
coordinate system. 

To enhance the robot's ability to accurately determine 

the position of objects, it is crucial to estimate its own 

location within the field. This estimation is achieved using 

rotary encoders attached to the bottom of the robot. Fig. 3 

illustrates the placement of these encoders. Each encoder is 

paired with an omnidirectional wheel, allowing the robot to 

calculate its current position based on displacement from an 

initial reference point. The displacement is derived from the 

number of rotations recorded by the rotary encoder, as 

specified in Equation (1). 

 

[
𝒙

𝒚
] =  [

𝐜𝐨𝐬 (𝜽 + 𝟒𝟓°) 𝐜𝐨𝐬 (𝜽 + 𝟏𝟑𝟓°)

𝐬𝐢𝐧 (𝜽 + 𝟒𝟓°) 𝐬𝐢𝐧 (𝜽 + 𝟏𝟑𝟓°)
] [

𝑹𝑬𝟎

𝑹𝑬𝟏
]      (1) 

 

(x,y) :  estimated robot position 

RE0 :  displacement of left rotary encoder 

RE1 :  displacement of right rotary encoder 

 

 
Fig. 3. Rotary Encoder Placement (Green Part) 
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B. Intel Realsense D435i 

The choice of depth camera is critical for the success of 
this research, as it significantly influences the outcome. The 
camera must meet several specific requirements to function 
effectively within the system. First, it must have a fast capture 
rate; the minimum required is 30 frames per second to ensure 
synchronization with the robot's primary camera. Second,  the 
camera must be  capable of adapting to  various  

 

 

Fig. 4 Intel Realsense D435i 

 

 

Fig. 5 Depth Camera Placement 

 

lighting conditions. This is crucial due to potential variations 
between the lighting in the test environment and the actual 
event venue. Finally, the camera needs to be compact enough 
to be integrated seamlessly into the IRIS robot's design. 

Based on these criteria, the Intel Realsense D435i (Fig. 4) 
was selected as the depth camera for this research. It offers a 
high capture rate of up to 90 frames per second, far exceeding 
the minimum requirement of 30 fps. This capability ensures 
optimal synchronization with the robot’s other cameras. 
Additionally, its design is well-suited for both indoor and 
outdoor environments, addressing the need for adaptability 
under different lighting conditions. Furthermore, its compact 
chassis is ideal for integration, fitting neatly within the IRIS 
robot’s frame. 

This depth camera (Fig. 5) differs from others due to its 
inclusion of a secondary sensor that enhances its ability to 
perceive its surroundings. This sensor is a 6-DOF (Degrees 
of Freedom) Inertial Measurement Unit (IMU), which aids in 
accurately detecting motion and orientation. The coordinate 
system utilized by the IMU is detailed in Fig. 6 and will be 
referred to throughout this research as the camera coordinate 
system. 

C. System Overview 

The architecture of the research system encompasses 
several interconnected processes, collectively depicted in 
Fig. 7. At the heart of the system lies the image processing 
block. This crucial component processes both depth and RGB 
images captured by the depth camera to identify unguarded 
areas within the goal. The output of this block is the pixel 
coordinates of these areas. These coordinates are then 
forwarded to the coordinate converter block, which computes 
the aiming angle necessary for the robot to target these 
unguarded zones effectively. 

 

Fig. 6  Intel Realsense D435i Coordinate System [11] 

 

 

Fig. 7  Block Diagram of System 

D. Depth Camera Block 

Prior to initiating the image processing algorithm, the raw 
images captured by the depth camera require preprocessing. 
This step is necessary due to the differing fields of view 
between the depth and RGB images. As illustrated in Fig. 8, 
objects appear smaller in the depth image than in the RGB 
image, a discrepancy resulting from their varied fields of 
view. This disparity leads to inconsistent object coordinates 
across the two image types. To address this issue, the images 
must be aligned to ensure they share the same field of view. 
Fig. 9 demonstrates the outcome of this alignment, showing 
that objects now appear the same size in both images. This 
alignment facilitates synchronized coordinates between the 
depth and RGB images, essential for accurate further 
processing. 

E. Image Processing Algorithm 

To estimate the position of the unguarded area, the system 
processes the image data obtained from the depth camera. 
This processing involves a series of steps, each designed to 
identify and analyze the relevant sections of the image where 
no obstacles or defenders are present. The detailed workflow 
of this image processing sequence is depicted in Fig. 10. 

The primary goal of the image processing stage is to enhance 
the recognition of the goal and the goalkeeper based on color 
and distance from the robot. To achieve this, the RGB image 
in Fig. 11 is employed to filter objects by color, identifying 
those that match the typical colors of the goal and the 
goalkeeper. The results of this color-based filtering process 
are depicted in Fig. 12 and Fig. 13. Specifically, Fig. 12 
isolates objects in white, which are indicative of the goal, 
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while Fig. 13 focuses on objects in black, corresponding to 
the goalkeeper. 

As previously noted, this research utilizes both RGB and 

depth images to enhance goal recognition. The system extracts 

distance information from the depth image, which complements 

the color data from the RGB image. Unlike the RGB image, 

which is filtered by color, the depth image is filtered based on 

distance values of each pixel. This selective filtering process 

isolates objects within a specific range of distances, determined 

by the relative positions of the robot and the goal. The method 

for calculating this distance range is outlined in Equation (2). 

Fig. 14 displays the result of this filtering, showing only objects 

that fall within the predetermined distance range. 

 

𝒓𝒈 =  √(𝒙𝒓 − 𝒙𝒈)𝟐 −  (𝒚𝒓 − 𝒚𝒈)𝟐 ± 𝑜𝑓𝑓𝑠𝑒𝑡 (2) 

  

(xr, yr) : robot coordinate 

(xg, yg) : goal coordinate 

rg : distance refrence 

offset : variable to control range. 

Although Figures 14 and 12 successfully isolate goal-
related objects, they still contain a considerable amount of 
noise from other detected objects. To mitigate this, the system 
combines these images to reduce noise, as shown in Fig. 15. 
This combined image serves as the primary reference for goal 
recognition, facilitating more accurate detection of the goal 
position. However, identifying the unguarded area within the 
goal requires an additional step. This unguarded area is 
determined through a simple elimination process, which 
involves subtracting the area occupied by the goalkeeper 
from the total goal area. This method effectively isolates the 
unguarded sections of the goal, essential for accurate shot 
targeting. 

The results of the goal recognition process are displayed 
in Fig. 16. In this image, a blue rectangle outlines the detected 
goal area, indicating where the goal is located. The 
goalkeeper is represented by a red object, highlighting its 
position within the goal. The unguarded area, where no 
obstacles or goalkeeper are present, is delineated by a green 

 

 

Fig. 11 Diffrence of Field of View 

 

Fig 12 Image Processing Block Diagram 

 

Fig. 13 RGB Goal Image 

 

 

 

Fig. 8  Goal Thresholding (White Threshold) 

 

 

Fig. 9 Goal Keeper Thresholding (Black Threshold) 

 

 

Fig. 10  Distance Filtering 
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box. This visual representation clearly distinguishes between 
the goal, the goalkeeper, and the unguarded sections, 
allowing for accurate assessment and targeting during 
gameplay. 

 

F. Coordinate Converter Block 

The final output from the image processing block is the 
pixel coordinate of the unguarded area. To effectively utilize 
this data for targeting, these pixel coordinates must be 
converted into real-world coordinates. This conversion is 
achieved using the Intel Realsense function 'deproject pixel 
to point,' which translates pixel dimensions into spatial 
measurements. 

Although the depth camera has the capability to calculate 
3D coordinates, this system utilizes only the 2D coordinates 
corresponding to the field coordinate system, which 
comprises the X and Y axes. The values for X and Y are 
calculated using Equations (3) and (4). Employing these 
equations ensures that the aiming angle is confined within the 
goal area, thereby enhancing the accuracy of goal-targeting 
actions. 

𝑋 =  (
𝐴−𝐵

𝐵−𝐶
) + 𝟑𝟎𝟎                                                   (3) 

𝑌 = 𝒅                                                                         (4)  

(X, Y) :  Estimated unguarded position 

A : pixel coord. of unguarded area (Point A, Fig. 16) 

B : left most part goal area (Point B, Fig. 16) 

C : right most part goal area (Point C, Fig. 16) 

D : nearest depth value 

 

Fig. 16 Goal Point of Interest 

III.  TESTING AND RESULT 

A. Coordinate Detection Test 

The research includes several tests to verify the 
accuracy of the system, conducted in distinct phases. The 
initial phase involves a coordinate detection test. During 
this test, an object measuring 43 cm in width and 80 cm in 
height is placed at various locations within the testing room 
in front of the depth camera. The Intel Realsense camera 
then estimates the coordinates of the object, which are 
subsequently compared with the actual, measured 
coordinates to assess accuracy. Figs 18 and 19 display these 
comparisons between the real-world and estimated 
coordinates. 

The results of this test indicate that the average error in 
the X-axis is 5.7%, and in the Y-axis, it is 1.49%. Both 
errors fall within the acceptable error margin of 10%, 
demonstrating the system’s capability to reliably estimate 
positions within a tolerable range of accuracy. 

 

Fig. 17 Comparison Graph for X Axis 

 

Fig. 19 demonstrates a noticeable increase in error for 
objects positioned more than 300 cm away from the camera. 
This observation is consistent with the specifications 
provided by the Intel Realsense D435i [14]. The increased 
error at greater distances aligns with the known limitations of 
the camera’s sensing capabilities, as detailed in the 
manufacturer’s documentation. 

B. Width Measurement Test 

As detailed in Part F of the methodology section, to 
accurately estimate the real-world coordinates of the 
unguarded goal area, the system compares the distances 
between the leftmost and rightmost points of the goal area. 
To validate the accuracy of this method, a specific test is 
conducted. In this test, the depth camera estimates the 
distance between the rightmost and leftmost coordinates of a 
single object, similarly to the coordinate detection test. The 
actual width of the object used in this test is 43 cm. Fig. 21 
presents a comparison between the actual width and the width 

 

Fig. 14 Combined Threshold 

 

Fig. 15 Final Result 
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estimated by the camera. The results indicate that the average 
error in this test is 3.14%. 

` 

C. Unguarded Area Detection Test 

This final test is crucial for confirming the overall functionality 
and accuracy of the system. In this test, the system is positioned 
at various locations around the testing area to detect the 
unguarded goal area. The unguarded areas detected by the 
system are then compared with the actual unguarded areas to 
compute the overall system accuracy. Additionally, this test 
evaluates whether the system successfully estimates the aiming 
angle. Success is defined by the estimated coordinates falling 
within the actual range of the unguarded area. To provide a 
clear representation of the test outcomes, Table 1 displays a 
selection of test data along with the results. The comprehensive 
data indicates that the average error across all tests is 1.3%, 
confirming that the system consistently and accurately 
identifies the position of unguarded areas from all test points. 

 

Table 1 Final Test Result 
Pos 

x 

Pos 
y 

Estimated 
X 

real 
x 

Left 
goal 

right 
goal 

Error 
(%) 

Success 

400 600 362.185 365 300 430 0.77 1 

490 630 355.856 365 300 430 2.50 1 

310 630 365.625 365 300 430 0.17 1 

400 600 343.333 350 300 400 1.90 1 

490 630 339.669 350 300 400 2.95 1 

310 630 350.406 350 300 400 0.11 1 

400 600 343.333 350 300 400 1.90 1 

400 600 440.678 435 370 500 1.30 1 

490 630 439.2 435 370 500 0.96 1 

310 630 446.341 435 370 500 2.60 1 

400 690 441.429 435 370 500 1.47 1 

400 600 454.622 450 400 500 1.02 1 

490 630 454.098 450 400 500 0.91 1 

310 630 460.976 450 400 500 2.43 1 

 

Pos x             : System position in X axis 

Pos Y             : System position in Y axis 

Estimated X       : Estimated unguarded position in X axis 

Real X              : Actual unguarded position in X axis 

Left/Right Goal  : Unguarded area range 

Error                   : Diff. for actual and estimated position 

III. CONCLUSSION 

The first series of tests validated the ability of the Intel 

Realsense D435i depth camera to estimate positions with an 

average error of 5.7% on the X-axis and 1.49% on the Y-axis, 

well below the acceptable error margin of 10%. These results 

affirm the reliability of the Intel Realsense D435i for 

positional estimation within the scope of this research. 

The width measurement test assessed the reliability of 

the method used to calculate the unguarded area of the goal. 

With an average error of 3.14% in estimated width, the Intel 

Realsense D435i demonstrated high reliability, supporting 

the conclusion that the method for calculating the unguarded 

goal area is dependable and suitable for application. 

The final test aimed to measure the accuracy of the entire 

system, evaluating both the error in estimated coordinates and 

the system's success rate. The results revealed an 

impressively low average error of 1.3% in coordinate 

estimation and a 100% success rate. The perfect success rate 

can be attributed to the relatively wide unguarded area, which 

ensures that even with some coordinate estimation errors, the 

targeted coordinates still fall within the actual range. These 

findings confirm that the system operates effectively as 

intended. 

In summary, the conducted tests demonstrate that the 

overall system is highly accurate and reliable for its intended 

application, confirming the efficacy of the Intel Realsense 

D435i and the methodologies employed in this research. 

IV.   FUTURE RESEARCH 

The research has employed a novel method to calculate the 

position of the unguarded area within the goal, which has 

proven to be relatively effective. However, there is 

considerable potential for enhancement. A primary limitation 

of the current approach is its dependence on accurately 

detecting the rightmost and leftmost parts of the goal to 

estimate the position of the unguarded area. This dependency 

could lead to inaccuracies under certain conditions where 

these extremities are obscured or not distinctly visible. To 

 

Fig. 18 Comparison Graph for Y Axis 

 

Fig. 19 RMS Error to Distance Graph [15] 

 

Fig. 20 Actual and Estimated Width Comparison 
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advance the reliability and robustness of the research, 

developing a new method that does not rely on the goal's 

range is essential. Such an approach could potentially yield 

more consistent and accurate results across a variety of 

scenarios, thereby improving the overall effectiveness of the 

system. 
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