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Abstract— Previous research of Model Predictive Control 

(MPC) focused on the effect of cost function weights to its 

performance on path tracking and obstacle avoidance. The best 

performance was obtained when the error weight is greater than 

the input weight. However, the car movement was still 

oscillating and avoiding maneuver was still ineffective. Different 

from the previous research, this paper focuses on finding the 

best performance by varying the combination of MPC 

parameters while maintaining the cost function weight ratio 

following the previous research. This research uses Linear Time 

Variant MPC (LTV MPC).The trajectory tracking problem is 

defined by using a time-varying reference. MPC parameters 

combinations are varied to find the best performing design. In 

the obstacle avoidance system, obstacle detection is done by 

measuring the distance between the instant car position and the 

obstacle position. While an obstacle is detected, a new lateral 

position constraint is calculated. Trajectory tracking test are 

done using 2 types of tracks: sine wave and lane changing. 

Obstacle avoidance tests are done using 1 obstacle and 2 

obstacles. Results are evaluated using Root Mean Square Error 

(RMSE)  of car position, cost function, and the nearest distance 

between car and obstacle. Results show that MPC was able to 

evade obstacles while tracking the time-varying reference with 

0.4 s delay. However, some variations were unable to meet the 

safe zone constraints for obstacle avoidance. 

Keywords—Autonomous Car, Model Predictive Control, 

Obstacle Avoidance, Trajectory Tracking. 

I. INTRODUCTION 

Development of control for autonomous vehicles has 

grown rapidly. The first autonomous car was a radio-

controlled car called the “Linriccan Wonder”, developed in 

1926 [1]. While in this 21st century, self-driving features are 

already implemented into several cars. Features includes 

Cruise Control and Active Lane Assist [2]. However, features 

only acts as driving aid; it does not allow the car to run 

without a driver. To realize a fully unmanned autonomous car, 

a reliable autonomous system is needed. 

A fully autonomous car, as explained in SAE J306, is a 

car that can run in any condition without driver’s intervention. 

By way of explanation, the Driver Assist System (DAS) 

handles all the Dynamic Driving Task (DDT) [3]. 2 tasks of 

DDT are lateral and longitudinal control as well as response 

to objects and other events. Much research has been done to 

develop das. 

One particular research is the use of Model Predictive 

Control (MPC) for path tracking and obstacle avoidance. [4] 

proved MPC can control the car to follow the path while 

evading obstacles. The research focused on the effect of cost 

function weights to its performance on path tracking and 

obstacle avoidance. The best performance was obtained when 

the error weight is greater than the input weight. However, 

the car movement was still oscillating and avoiding maneuver 

was still ineffective.  

To overcome the previous research’ problem, the writers 

propose to use a Linear Time Variant MPC (LTV MPC) for 

path tracking and obstacle avoidance. In this paper, cost 

function weight ratio is maintained following [4]. Instead, in 

this paper the combination MPC parameters, namely the 

Prediction Horizon (Np) and Control Horizon (Nc), are 

varied to find the best performing design. 

II. METHODS 

A. Related Works 

Current research on autonomous car control includes the 
usage of MPC as its controller. One of them is the research of 
MPC ability to handle path tracking and obstacle avoidance 
problem as done in [4]. In the research, it was found that when 
the error weight is greater than the input weight in cost 
function formulation, it produces the least oscillating car 
movement. It was also proven that MPC can handle initial 
position error to the desired path. Obstacle avoidance tests 
were done by placing 3 static obstacles along the reference 
path. Results showed the car was able to follow the path while 
evading obstacles. Even though evading maneuver seemed to 
be ineffective from the fact that it moves farther away from 
what is needed to avoid the obstacle. 

B. Literature Review 

1) Kinematic Car Model 

One of the well-known models used to describe vehicle 

kinematics is called the Bicycle Model. In Fig.1, the vehicle 

has 2 wheels, the front and the back. The back wheel is 

attached to the vehicle body and the front wheel can rotate 

about the vertical axis of vehicle to turn it. the vehicle’s 

velocity in global coordinate is (𝑣 cos 𝜃 , 𝑣 sin 𝜃) . The 

kinematic equation is defined by 

with L as car length, V as the velocity, and θ as the heading 

angle. Hence,  �̇�  is the turning rate [5]. 

�̇� = 𝑉 𝑐𝑜𝑠(𝜃) 
�̇� = 𝑉 sin(𝜃) 

�̇� =
𝑉

𝐿
tan(𝛾) 

(1)  
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2) Model Predictive Controller 

The main concept of MPC is it calculates the system’s 

future input value as a solution to an optimization problem. 

MPC predicts the system’s future output within the 

determined time horizon [6]. 

The cost function on time step k is defined by 

𝐽𝑘 =∑𝒙𝑘+𝑖+1
𝑇 𝑄𝒙𝑘+𝑖+1 + 𝒖𝑘+𝑖

𝑇 𝑅𝒖𝑘+𝑖

𝑁𝑝

𝑖=0

 (2)  

where Q and R are cost function weights for error and input, 

respectively, 𝑖 is the prediction step from time step k, and Np 

is the prediction horizon [7].  

3) Adaptive MPC 

Adaptive MPC is an MPC that uses a time-varying 

internal model. This model is suitable for a system that has a 

different dynamic according to its operating points [8]. One 

adaptive MPC method is Linear Time Variant MPC (LTV 

MPC). 

LTV MPC is mainly used to overcome nonlinear systems. 

In this method, model linearization is done in every time step. 

Therefore, a new and more accurate linear model is produced 

according to the new operating point [9]. 

4) Quadratic Programming 

Quadratic programming (QP) is an algorithm developed 

to find an optimum value (𝑥) that can minimize cost function 

(𝐽). Generally, cost function is defined by 

𝐽 =
1

2
𝑥𝑇𝐸𝑥 + 𝑥𝑇𝐹 (3)  

subjected to a constraint defined by 

𝑀𝑥 ≤ 𝛾 (4)  

Where E and F are vectors, M is a matrix reflecting 

constraints and γ is the constraint value vector compatible 

with the quadratic programming problem.  

To get the optimum value, the partial derivative of J to x 

needs to be 0. Therefore, the optimum x value can be 

formulated as 

𝑥 = −𝐸−1(𝑀𝑇𝜆) (5)  

where λ is called the Lagrange Multiplier, the variable varied 

to obtain the optimum x value [10].  

5) Hildreth’s Algorithm 

The Hildreth’s Algorithm is one of quadratic 

programming algorithm. This algorithm defines a set of 

constraints at each time step to be treated as the active set. 

The set is a subset of constraints that are active on the current 

point [10]. Hildreth’s Algorithm is as written in [11]. 

6) Taylor Series Linearization 

Linearization can be done using the first-order Taylor 

series. If there exists a function with a single variable called 

𝑓(𝑥). Then the linearization of 𝑓(𝑥) on the equilibrium point 

a, where 𝑓(𝑎) = 0 is fulfilled can be written by 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) (6)  

 [12]. 

While for multiple variable function is defined by 

𝑓(𝑥1, 𝑥2), the linearization on the equilibrium point of a and 

be can be written by 
𝑓(𝑥1, 𝑥2) = 𝑓(𝑎, 𝑏) + [𝑓

′(𝑎)(𝑥 − 𝑎)
+ 𝑓′(𝑏)(𝑥 − 𝑏)] 

(7)  

 [13]. 

C. System Design 

1) Car Plant and MPC Internal Plant 

The car kinematic model (1) is used for the plant while 

the linearized kinematic model of (1) is used for the MPC 

internal model. Linearization was done using the first order 

Taylor series, the resulting equation can be written in a state 

space representation as 

�̇� = 𝐴𝑋 + 𝐵𝑈 
�̇� = 𝐶𝑋 

(8)  

with 

𝐴 =

[
 
 
 
 
0 0 −𝑉 sin(𝜃) 0
0 0 𝑉 𝑐𝑜𝑠(𝜃) 0

0 0 0
𝑉

𝐿
tan2(𝛾)

0 0 0 0 ]
 
 
 
 

  

𝐵 =

[
 
 
 
 
 𝑐𝑜𝑠(𝜃) 0
sin(𝜃) 0
tan(𝛾)

𝐿
0

0 1]
 
 
 
 

 𝐶 = 𝐼4 

(9)  

in accordance to the global coordinate, the states are x 

position, y position, heading angle, and steering 

angle [𝑥 𝑦 𝜃 𝛾]𝑇 . The inputs are car velocity and 

steering rates, [𝑉 𝜔]𝑇 .  The system is then discretized using 

Zero-Order-Hold (ZOH) method with 0.1 s sampling time. 

2) Lanes and Obstacle 

The reference point of the ego car is in the center of the 

car. the car is driving on a 3-lane road along the x-axis. Lane 

width is 4 m. the lane is defined as y position constraint 

𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥  (10)  
Obstacle avoidance tests were done using a simple 

dynamic obstacle, meaning the obstacle is a non-moving and 

non-permanent object placed on the road. obstacle position is 

predetermined, and object detection is done by measuring the 

distance between the car and the obstacle. If the distance is 

less than 50 m, then an object is considered detected. When 

Fig. 1. Bicycle Model 
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Fig. 2. Model Predictive Control Algorithm [7] 
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an object is detected a new x,y position constraint is defined 

following the safe zone in Fig.3. 

3) Controller Design 

The predicted output of MPC is written as 

�⃗� = 𝐹𝑥(𝑘) + ΦU⃗⃗ (𝑘) (11)  
where Np is the prediction horizon, Nc is control horizon, 

A,B, and C matrices are obtained from the MPC internal 

model. where 𝑋 ∈  𝑅4×1𝐴 ∈ 𝑅4×4 ,  B ∈ R4×2 , 𝐶 ∈

𝑅4×4 , �⃗�  ∈ 𝑅4∙𝑁𝑝×1 , 𝐹 ∈ 𝑅4∙𝑁𝑝×4 , Φ ∈ 𝑅4∙𝑁𝑝×2∙𝑁𝑐  and U⃗⃗ ∈
𝑅2∙𝑁𝑐×1. 

According to the basic theory, MPC calculates input value 

as a solution to an optimization problem. Therefore, a QP 

problem is defined as a cost function and constraint 

min 𝐽 = �⃗⃗� 𝑇�̅��⃗⃗� + (𝑅𝑠 − �⃗� )
𝑇
𝑄(𝑅𝑠 − �⃗� ) 

𝐽 =
1

2
(�⃗⃗� (𝑘)𝑇2 (Φ𝑇Φ+ �̅�)⏟      

𝐻

�⃗⃗� (𝑘) 

+�⃗⃗� (𝑘)𝑇Φ𝑇 4(𝑅𝑠 − 𝐹𝑥(𝑘))⏟          
𝑓

 

+2(𝑅𝑠 − 𝐹𝑥(𝑘))
T
(𝑅𝑠 − 𝐹𝑥(𝑘))) 

(12)  

𝑀 ∙ �⃗⃗� (𝑘) ≤ 𝑁 (13)  

where M and N matrices are the combined constraint between 

input (U(k)) and output (Y(k)) and are defined by 

𝑈𝑚𝑖𝑛 ≤ 𝑈 ≤ 𝑈𝑚𝑎𝑥 

[

𝐼𝑛𝑢
𝐼𝑛𝑢
⋮
𝐼𝑛𝑢

]

⏟
 𝑐2

[

𝑈(1)𝑚𝑖𝑛
𝑈(2)𝑚𝑖𝑛

⋮
𝑈(𝑛𝑢)𝑚𝑖𝑛

]

⏟        
𝑼𝑚𝑖𝑛

≤ �⃗⃗� (𝑘) ≤ [

𝐼𝑛𝑢
𝐼𝑛𝑢
⋮
𝐼𝑛𝑢

]

⏟
 𝑐2

[

𝑈(1)𝑚𝑎𝑥
𝑈(2)𝑚𝑎𝑥

⋮
𝑈(𝑛𝑢)𝑚𝑎𝑥

]

⏟        
𝑼𝑚𝑎𝑥

 

−�⃗⃗� (𝑘) ≤ −𝑐2 𝑼𝑚𝑖𝑛 

�⃗⃗� (𝑘) ≤ 𝑐2 𝑼𝑚𝑎𝑥 

(14)  

𝑌𝑚𝑖𝑛 ≤ 𝐹𝑥(𝑘) + ΦU⃗⃗ (𝑘) ≤ 𝑌𝑚𝑎𝑥 

𝑌𝑚𝑖𝑛 − 𝐹𝑥(𝑘) ≤  ΦU⃗⃗ (𝑘)
≤ 𝑌𝑚𝑎𝑥 − 𝐹𝑥(𝑘) 

−Φ�⃗⃗� (𝑘) ≤ −𝑌𝑚𝑖𝑛 + 𝐹𝑥(𝑘) 

Φ�⃗⃗� (𝑘) ≤ 𝑌𝑚𝑎𝑥 − 𝐹𝑥(𝑘) 

(15)  

with 

�⃗⃗� = [

𝑈(𝑘 + 1|𝑘)
𝑈(𝑘 + 2|𝑘)

⋮
𝑈(𝑘 + 𝑁𝑐|𝑘)

] (16)  

Car velocity constraint is chosen based on traffic 

regulations to drive inside the city and the highway. Steering 

rate constraint is the same as [14]. Output constraint is chosen 

based on research problems, research limitations, and car 

physical limitation itself. Y position is bounded to keep the 

car from going off-road. Heading angle is bounded according 

to the research limitation that the car cannot do a U-turn. 

Lastly, steering angle constraint is the same as [14]. This 

quadratic problem is solved using Hildreth’s algorithm. 

TABLE I. CONSTRAINT INPUT 

Variable Input Constraint 

Velocity 30 𝑘𝑚 ℎ𝑟⁄ ≤ 𝑉 ≤  100 𝑘𝑚/ℎ𝑟 

Steering angle −60°/𝑠𝑒𝑐 ≤ 𝜔 ≤ 60°/𝑠𝑒𝑐 

4) Reference 

A time-varying reference of x and y position is used in 

this research. X position reference is based on the desired 

velocity and is defined by 

𝑥(𝑘) = 𝑉𝑟𝑒𝑓 ∙ 𝑇𝑠 ∙ 𝑘 (17)  
Where Ts is the sampling time and k is the number of 

iterations. Trajectory tracking tests were done for sinusoidal 

tracks and a lane-changing maneuver. While obstacle 

avoidance tests were done by placing objects along a straight-

line reference. 

III. RESULTS AND DISCUSSION 

Five Parameters used in this research are as written in table 
II. Tests were done by varying the combination of Prediction 
Horizon (Np), Control Horizon (Nc), and maximum number 
of iterations for the QP solver. Evaluations were done by 
comparing the resulting car movement in a 2D plane and 
comparing the RMSE value of x, y, and absolute position of 
the car, cost function, and computation time. 

TABLE II. SIMULATION PARAMETERS 

Parameter Value 

Car Length 4 m 

Car Width 2 m 

Road Width 4 m 

Cost Function Error Weight (Q) 0.4 

Cost Function Input Weight (R) 0.6 

A. Trajectory Tracking 

1) Sinusoidal Track 

Sinusoidal track tests were done using 2 variations of 

velocity, 10 m/s and 20/ m/s. In 10 m/s velocity, the 

maximum QP iteration used is 40 times and as seen from 

Fig.7, the car followed the desired sinusoidal reference track. 

However, there is an x position error of 3.28 m – 4.70 m. in 

other words, the car failed to reach the desired position at the 

desired time, there is a 0.32 s – 0.47 s delay to reach the 

desired position. This delay is caused by the transient time of 

the car to reach the desired velocity of 10 m/s from 0 m/s. 

moreover, greater Nc increased the error and cost function 

due to the future input value used by MPC to solve the QP 

problem. 

The second variation of sinusoidal track test used 20 m/s 

velocity and 80 times for the maximum number of QP 

Fig. 3. Safe Zone 
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iterations. Similar to the previous test, the car managed to 

follow the desired track (see Fig.5) with a slight delay of 0.35 

s – 0.47 s as seen from the x position error of 7.03 m – 9.46 

m. This is caused by the transient time of the car to reach the 

desired velocity of 20 m/s from 0 m/s.  

2) Lane Changing Maneuver 

The reference used for this test portrays the movement of 

a car changing lanes from the middle lane to the left lane. 

Based on Fig.6, MPC managed to control the car's movement 

to change lanes. There is an average delay of 0.4 s to reach 

the desired position at the desired time as seen from the x 

position error of 3.25 m – 4.66 m. The variation with Nc=7 

produced an oscillating movement with a small amplitude 

before the car moves to change lanes. This means the MPC 

had a hard time controlling the car to move straight, this 

suggests that farther Nc doesn’t necessarily produce the best 

movement. 

3) Sinusoidal Track Outside Constraint 

The reference used in this test demands a large steering 

angle beyond the chosen constraint. This test was done to see 

the limitation of MPC. Results showed the value of error 

increased over time (see Fig.4). Therefore, it can be implied 

that MPC was unable to control the car movement to follow 

the desired track. Other decision that can be made is to 

decrease the car velocity to maintain the steering angle 

constraint. However, to produce this decision the problem 

needs to be described as a path tracking problem, as done in 

[15] . However, because this research uses trajectory tracking 

problem, MPC doesn’t have control over car velocity, hence 

steering control demand is always beyond the predetermined 

constraint. In trajectory tracking problem, MPC needs to 

reach the desired position at the desired time, so it controlled 

the car to go as fast as possible to meet the desired time for 

the next reference point.  

B. Obstacle Avoidance 

Obstacle avoidance tests are divided into two parts. Part 

one is using 1 obstacle and part two is using 2 obstacles. Two 

velocity variations are used for the test using 1 obstacle. 

1) 1 Obstacle 

All variations on the first test of obstacle avoidance using 

10 m/s velocity result in an oscillating movement (see Fig.9). 

This can be caused by the combination of parameters chosen 

was not suitable for a straight-line track. The variation with 

Np=15 and Nc=3 managed to avoid the obstacle. This was 

Fig. 4. Lane Changing Maneuver 
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shown by the minimum distance of the car to the obstacle, 

which was 2.33m, which meets the safe zone criteria. 

However, avoiding maneuver was ineffective, seen by the 

unnecessary time taken to go back to the reference track. 

Moreover, the car movement in this variation oscillated with 

a big and increasing amplitude after avoiding the obstacle. 

Therefore, it produced a huge error value. This is maybe due 

to the number of maximum QP iterations was not enough to 

find the optimum value of QP problem of MPC. 

Meanwhile, the variation with Np=15 and Nc=4 was 

unable to avoid the obstacle. This was shown by the 

minimum distance of the car to the obstacle, which was 1.99 

m, less than the required 2 m safe zone criteria. The variation 

with Np=20 and Nc=5 managed to avoid the obstacle but 

didn’t go back to the reference track. There is a possibility 

that this variation may need more time beyond the simulation 

time to go back to the track. Apart from that, MPC managed 

to keep the car inside the lane, fulfilling the Y position 

constraint of 6 m. 

Continuing the test using 1 obstacle with 20 m/s velocity, 

all variations produced an oscillating movement (see Fig.10). 

The variation with Nc=7 and a maximum number of QP 

iteration of 40 times showed that MPC was unable to find the 

optimum input value to minimize lateral error within the 

constraint. This is due to the further Nc producing a greater 

cost function, while the QP solver hasn’t found the optimum 

value within 40 iterations. In the case of a combination with 

Np=10, Nc=7, and a maximum QP iteration of 40 times, it 

was shown that the car did not move back to the reference 

trajectory. This also happened in the previous test using 10 

m/s velocity, caused by the Np chosen was not far enough or 

the maximum number of QP iterations being too small to find 

the optimal value.  

2) 2 Obstacles 

The next test used 2 obstacles. In this test, the 2 obstacle 

has a 250 m distance. The car avoiding maneuver was 

predetermined in the program to turn right on the first 

obstacle and turn left on the second. Results on Fig.8 showed 

that all variations produced an oscillating movement with a 

big amplitude. This means, all the variation has poor straight-

line tracking ability. By comparing all variations, the 

variation with a better obstacle avoidance maneuver has 

worse straight-line tracking ability. 

IV. CONCLUSION 

Based on test results and data analysis, it can be 

concluded that the LTV MPC with a linear model in this 

research managed to follow the reference trajectory. The 

importance of having a well balance combination of Np and 

Nc value should also be noted to get a good performing MPC 

design. Lastly, MPC has the limitation where the input 

demand needs to be within the constraint. Otherwise, QP 

solver will not be able to find the optimum solution. 

As this research was done with several limitations, there 

is room for improvements. In this regard, the writer suggests 

considering the following things for future work on this topic: 

1. Using a real value of car parameters and car physical 

constraints for simulation to get a more accurate 

result. 

2. A more complex environment and obstacle model 

for simulation. This can be done much better by 

referencing the existing real-world environment. 

3. Using sensor for obstacle detection. 
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4. Using road-relative coordinate (frenet serret frame 

or curve linear frame) to improve lateral position 

accuration. 

5. Implementing feedforward configuration to 

overcome tracking delay. 

6. Finding a new combination of MPC parameters to 

get better performance. 

7. Research using a smaller δ  value in Hildreth's QP 

algorithm to ensure that the resulting QP solution is 

indeed the optimal solution. 

8. Taking external disturbance into account in the 

simulation. 

ACKNOWLEDGMENT 

The writer expresses sincere gratitude to the Control 
System lecturers of ITS Department of Electrical Engineering 
for the guidance on writing and conducting this research. 
Writer also would like to thank all the friends for all the 
valuable advice and support throughout this research. 

REFERENCES 

[1] K. Bimbraw, “Autonomous cars: Past, present and 

future: A review of the developments in the last 

century, the present scenario and the expected future 

of autonomous vehicle technology,” in ICINCO 2015 

- 12th International Conference on Informatics in 

Control, Automation and Robotics, Proceedings, 

2015, vol. 1, pp. 191–198. doi: 

10.5220/0005540501910198. 
[2] S. Charan and A. Srour, “Self Driving Cars,” May 

2013. [Online]. Available: 

www.funginstitute.berkeley.edu 

[3] S. J. Babak, S. A. Hussain, B. Karakas, and S. Cetin, 

“Control of autonomous ground vehicles: A brief 

technical review,” in IOP Conference Series: 

Materials Science and Engineering, Aug. 2017, vol. 

224, no. 1. doi: 10.1088/1757-899X/224/1/012029. 

[4] A. Hatem, “model predictive control for path 

tracking and obstacle avoidance of autonomous 

vehicle,” sweden, 2018. 

[5] P. Corke, Robotics, Vision and Control, 1st ed., vol. 

118. Cham: Springer International Publishing, 2017. 

doi: 10.1007/978-3-319-54413-7. 

[6] B. J. Halim, “Perancangan Sistem Autopilot dan 

Guidance Berbasis Model Predictive Control Sliding 

Curve pada Unmanned Surface Vehicle dengan 

Gangguan.,” 2021. 

[7] J. A. Rossiter, A First Course in Predictive Control 

Second Edition. 2018. 

[8] Mathworks, “Adaptive MPC,” 2018. 

https://www.mathworks.com/help/mpc/ug/adaptive-

mpc.html (accessed Apr. 15, 2022). 

[9] D. Abel and A. Katriniok, LTV-MPC Approach for 

Lateral Vehicle Guidance by Front Steering at the 

Limits of Vehicle Dynamics. 2011. 

[10] L. Wang, Model Predictive Control System Design 

and Implementation Using MATLAB®. London: 

Springer London, 2009. doi: 10.1007/978-1-84882-

331-0. 

[11] V. T. T. Lam, A. Sattar, L. Wang, and M. Lazar, “Fast 

Hildreth-based Model Predictive Control of Roll 

Angle for a Fixed-Wing UAV,” IFAC-

PapersOnLine, vol. 53, no. 2, pp. 5757–5763, 2020, 

doi: 10.1016/j.ifacol.2020.12.1608. 

[12] M. Ravi Tailor and P. H. Bhathawala, “Linearization 

of Nonlinear Differential Equation by Taylor’s Series 

Expansion and Use of Jacobian Linearization 

Process,” International Journal of Theoretical and 

Applied Science, vol. 4, no. 1, pp. 36–38, May 2011, 

Accessed: Jun. 10, 2022. [Online]. Available: 

https://researchtrend.net/ijtas/ijtas_2012/10%20KR

UTI%20TAILOR.pdf 

[13] Katsuhiko. Ogata, Modern control engineering. 

Prentice-Hall, 2010. 

[14] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, 

and F. Borrelli, “Linear model predictive control for 

lane keeping and obstacle avoidance on low 

curvature roads,” in 16th International IEEE 

Conference on Intelligent Transportation Systems 

(ITSC 2013), Oct. 2013, pp. 378–383. doi: 

10.1109/ITSC.2013.6728261. 

[15] T. Faulwasser, “NMPC for Tracking and Path 

Following,” Dissertation, Guericke Universität , 

Magdeburg, 2012. Accessed: Jun. 13, 2022. [Online]. 

Available: https://d-nb.info/1054135541/34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

_ 

 

https://d-nb.info/1054135541/34


Journal on Advanced Research in Electrical Engineering, Vol. 6, No. 2, Oct. 2022    136 

 

 


