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Abstract—An autonomous car is a car that can operate 

without being controlled by humans. Autonomous cars must be 

able to detect obstacles so that the car does not hit objects that 

are on the path to be traversed. Therefore, it takes a variety of 

sensors to determine the surrounding conditions. The sensors 

commonly used in autonomous cars are cameras and LiDAR. 

Compared to LiDAR, the camera has a relatively long detection 

distance, lower cost, and can be used to classify objects. In this 

research, the monocular camera and Mask R-CNN algorithm 

are used to create a system that can detect obstacles in the form 

of cars, motorcycles, and humans. The system will generate 

segmentation instances, bounding boxes, classifications, 

distance, and width estimation for each detected object. Custom 

dataset that is created manually are used to get tresults that fits 

the environtment. The system used can produce a Mean 

Average Precision of 0.81, a Mean Average Recall of 0.89, an F1 

score of 0.86, and a Mean Absolute Percentage Error of 13.4% 

for the distance estimator. The average detection speed of each 

image is 0.29 seconds. 

Keywords—autonomous car, mask R-CNN, monocular 

camera, obstacle detection 

I. INTRODUCTION 

An autonomous car is a car that can operate without the 
involvement of people behind its wheel[1]. Nowadays, the 
improvement of autonomous car technology has increased 
rapidly. This rapid improvement was influenced by 
technological developments, both from electronic technology, 
telecommunications, and transportation. Autonomous cars 
provide many benefits in life. With autonomous cars, road 
congestion can be reduced, transportation costs are reduced, 
and can reduce the number of road accidents[2][3]. With the 
increasing use of autonomous cars, vision zero programs will 
be more likely to be achieved. Vision Zero is a program that 
aims to reduce the number of fatal road accidents to zero[4].  

Autonomous cars can be either partially or fully 
autonomous. According to the Society of Automotive 
Engineers (SAE), the level of automation of autonomous cars 
is divided into 6. With the first three levels, the driver still 
controls the car with the assist feature and the last three levels 
are automatic. For the autonomous cars in level 0, the 
automatic features are still limited to temporary warnings and 
assistance, such as blind spot warnings and automatic 
emergent breaks. Level 1 provides steering or brake 
assistance, as in line centering assistance and adaptive cruise 
control, whereas level 2 can do both. At levels 3 and 4 the car 

can run automatically under limited conditions, where several 
conditions must be met. And at the last level or level 5 the car 
can run automatically in any condition. 

Autonomous cars do not require human intervention to 
operate. Therefore, autonomous cars must be able to identify 
the surrounding environment and calculate the steps that will 
be taken. Some of the features that exist in autonomous cars 
are obstacle detection, empty space detection, path planning, 
tracking, and others. In detecting obstacles several sensors can 
be used such as LiDAR and cameras. LiDAR works by 
emitting a focused beam of light and the reflection time 
detected by the sensor is measured, so that the distance to the 
object can be calculated. Because it uses light, LiDAR cannot 
penetrate rain, clouds, and fog[5]. In addition, LiDAR has 
other weaknesses, including having a short detection distance, 
having an expensive price and not being able to distinguish 
between types of objects[6]. In contrast to the use of a camera 
that can detect objects at a relatively long distance, the use of 
a camera also has a lower cost. With the use of the camera, 
image processing and computer vision applications can be 
carried out, so that object detection can be carried out and 
classify the types of objects that have been detected. 

Detection of objects using the camera has been done a lot. 
Detection of objects is done by using a neural network. Some 
of the algorithms used are Mask R-CNN[7], YOLO[8][9], etc. 
In research [10], the detection of car obstacles was carried out 
using the faster R-CNN method and the predictions of object 
classification and 3D bounding boxes of objects were 
generated with an average detection speed of 0.81 seconds for 
each image. In research [11], 5 object types were detected 
using the YOLOv4 method and obtained object classification 
and object bounding boxes with a processing time of 0.05 
seconds for image input and 0.03 for video input. In research 
[12], traffic signs were detected using the mask R-CNN 
method. By using the Mask R-CNN method, prediction results 
are obtained in the form of bounding boxes, classifications, 
and segmentation instances of objects. In addition, the mask 
R-CNN also has an average detection speed of 0.38 seconds 
for each frame. 

II. METHODS 

A. Dataset 

The dataset used for training in the Mask R-CNN 

algorithm consists of two input data, namely training data and 
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validation data. The input data is in the form of an image as 

shown in Fig. 1 and annotations in the form of the coordinates 

of the segmentation of the object. In the picture and 

annotations in the form of the segmentation coordinates of the 

object. Annotations are given in the image so that when doing 

the training model you can find out the location of the object 

and for validation when the validation process occurs.  

This custom dataset is created manually. The pictures 

were taken manually using a monocular camera. Each image 

is given annotations manually. Annotations were given using 

the VGG Image Annotator (VIA) program [13]. Fig. 1 shows 

an example of annotations using VIA. 

This dataset consists of three classes, namely cars, 

motorcycles, and people. The three classes are three objects 

that are often encountered on the road. The use of custom 

datasets is due to using custom datasets, the objects that are 

better suited to the surrounding environment, and only using 

object data that is only needed. The comparison of the amount 

of training and validation data can be seen in Table I. 

B. Mask R-CNN Architecture 

Broadly speaking, Mask R-CNN architecture has two 

main parts. The first part is the backbone network and head 

network. The backbone network consists of a Residual 

Neural Network[14] with Feature Pyramid Network[15] 

(ResNet 101- FPN) and Region Proposal Network (RPN) and 

the head network consists of a Fully Connected layer and 

Fully Convolutional Network. 

ResNet-101 FPN functions to detect or extract features in 

the image, which is then continued by the RPN process, 

where the feature map area that has the potential to have 

objects will be identified to produce the proposed region. The 

head network has two branches, namely the Fully Connected 

Layer (FCL) which has a function to classify and predict 

bounding boxes from the region that has been proposed by 

RPN, and the Fully Convolutional Network to create 

segmentation instances from objects. Thus, the Mask R-CNN 

algorithm will process the input image and resulting in object 

prediction, bounding box, and instance segmentation. 

C. Object Distance and Width Estimation 

Distance estimation requires some data, including the 
Field of View of the camera used, object size reference, and 
bounding box data. The distance that is estimated is the 
distance from the camera to the detected object. Estimating the 
object distance can be done by comparing the size and angle 
of the FOV relative to the object. In Fig. 2 it can be seen that 
an object that has the same height has a different relative 

 
Fig. 1. Training Data Sample. 

 

 TABLE I. COMPARISON OF THE AMOUNT OF TRAINING DATA AND 

VALIDATION DATA 

Train/Val Total Data 

Pictures Annotations 

Training 594 2660 

Validation 291 1460 

 

 
Fig. 2. Mask R-CNN Architecture. 

 

 

 

 

 
Fig. 2. Effect of Distance on FOV Angle. 

 

 

 

Fig 1 

 

 

 
Fig. 1. Representation of Comparison of Dimensions and FOV of Objects 

to Frames from Cameras. 
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angle, depending on the distance from the object to the 
camera. 

The representation of the object against the frame can be 
seen in Fig. 3, where the length and height of the object are 
directly proportional to the relative FOV of the object. By 
using the variable H (Height) the relative FOV angle can be 
calculated by equations (1) and (2) where 𝐻𝑜𝑏𝑗𝑒𝑐𝑡  is the height 

of the bounding box. 

𝐻𝑜𝑏𝑗𝑒𝑐𝑡

𝐻𝑓𝑟𝑎𝑚𝑒

=
𝛽𝑜𝑏𝑗𝑒𝑐𝑡

𝛽𝑓𝑟𝑎𝑚𝑒

 (1) 

𝛽𝑜𝑏𝑗𝑒𝑐𝑡 =
𝐻𝑜𝑏𝑗𝑒𝑐𝑡 ×  𝛽𝐹𝑟𝑎𝑚𝑒

𝐻𝑓𝑟𝑎𝑚𝑒

 (2) 

 

From the angle obtained, an isosceles triangle is generated, 
which can be divided into right triangles, as shown in Fig 5. 
The distance of the object to the camera can be calculated 
using a trigonometric equation as in equation (3) with 𝐻𝑟𝑒𝑓  as 

the object's reference height or the actual object's height. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
0.5𝑊𝑟𝑒𝑓

tan(0.5𝛽𝑜𝑏𝑗𝑒𝑐𝑡)
 (3) 

 

The estimated width of the detected object is calculated by 
comparing the reference size and the size of the bounding box. 
In equation (4) the reference used is the height of the object 
because unlike the length and width of the object, it changes 
more when compared to the height of the object which has a 
relatively constant value. 

𝑊𝑜𝑏𝑗𝑒𝑐𝑡 =
𝐻𝑟𝑒𝑓 × 𝑊𝑜𝑏𝑗𝑒𝑐𝑡

𝐻𝑜𝑏𝑗𝑒𝑐𝑡

 (4) 

III. SYSTEM TESTING 

A. Training 

The system training process is carried out using a cloud 

computing platform from Google, with the name Google 

Collaboratory Platform. To do the training, the Google Colab 

Pro plan was used. Google colab pro is very capable of doing 

heavy machine learning training. GPU specifications from 

google colab pro can be seen in the Table II. The training 

model is carried out for 30 epochs and is divided into three 

stages, where each stage has a different number of epochs. 

The first stage is done to do training heads and is done for 15 

epochs. The second stage is the ResNet stage 4 training layer 

until the end, including the heads, do 5 epochs. The third is 

fine-tuning all layers and 10 epochs are done. Every time you 

finish an epoch, one weight will be generated and then save 

it to Google Drive. Fig. 7 shows the results of the training loss 

for each epoch, where epochs 1-15 are the first stage, epochs 

16-20 are the second stage, and epochs 21 to 30 are the third 

stage. 

From Fig. 6, it can be seen that the training process in each 

of the first epochs of each stage has a higher time than in other 

epochs. The 16th epoch is the beginning of the second stage, 

and the 21st epoch is the beginning of the third stage. In the 

second epoch, the detection time decreases and then increases 

again before decreasing in epoch 5.  

B. Validation 

Validation is carried out to determine the performance of 
the model that has been trained. Validation is done by testing 
the model to the validation data that has been prepared. 
Validation data contains data that is different from training 

 
Fig. 4. Use of trigonometric rules to obtain the estimated distance between 

the camera and the object. 

 

 

 

 
Fig. 3. Training Loss Chart for each Epoch. 

 

 

 

 

 

 
Fig. 5. Graph of Training Duration for each Epoch. 

 

 

 

 

 

TABLE II.  SPECIFICATION OF THE USED GPU 

Parameter Specification 

GPU Architecture NVIDIA Pascal 

Cores 3584 

Memory Size 16 GB 

Memory Type HBM2 

Bandwidth 732 GB/s 

 

 
Fig. 6 Graph of Evaluation Results for each Epoch. 

 

 

 

 

Fig 2 
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data. There are three parameters used to evaluate the model, 
namely mean average precision (mAP), mean average recall 
(mAR), and f1 scores. Where mAP is the average of Average 
precision which states how precise a model is to make 
predictions on data with positive categories and mAR is the 
average of Average Recall which states how well the model 
can predict positive data from all categories. While the F1 
score is a calculation between mAP and mAR. The three 
parameters have values between 0 to 1, where 1 is a very good 
value and 0 is a very bad value. The selection of the best epoch 
can be determined by looking at the F1 score. 

Fig. 8 shows that the mAP score is in the range of 0.7 and 
0.85, with the highest score is 0.83 at the 21st Epoch with the 
lowest score is 0.74 at the 12th Epoch. The mAR score is in the 
range of 0.8 and 0.9 with the highest score being 0.89 at the 
21st Epoch and the lowest being 0.81 at the 12th Epoch. The 
F1 score is in between the mAR and mAP scores in the range 
of 0.75 and 0.9 with the highest score of 0.86 at the 21st epoch 
and the lowest score of 0.77 at the epoch 12th 

C. Object distance and width estimation 

The demonstration of distance and width estimation is 

done by estimating objects that have been detected. To 

perform the test, used images were taken using a camera at a 

distance of 1 to 30 meters from the object at 1-meter intervals. 

Testing the estimated distance and width of the object, the 

results are shown in Table IV. and the width of the object is 

2 meters. 

Evaluation can be calculated using the Mean Absolute 

Percentage Error (MAPE) method in equation (5) where x is 

the actual value (actual distance) and y is the predicted value 

(the estimated distance). 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑ |

𝑥𝑖 − 𝑦𝑖

𝑥𝑖

|
𝑛

𝑖=1
 (5) 

 

From the test, parameters are obtained in the form of 

estimated distance, error, and estimated width of the object. 

In distance estimation, the largest error is obtained at a 

distance of 28 meters, amounting to 3.23 meters, with the 

smallest error obtained at a distance of 7 meters, with an error 

of 0.05 meters. The obtained MAPE of distance estimation is 

13.2% and for the width estimation with an average estimated 

width of 2.093, the MAPE is 16.4%. 

TABLE IV. DISTANCE AND WIDTH ESTIMATION RESULT 

True Distance (m) Estimated 

Distance (m) 

Estimated Width 

(m) 

1 2.58 2.95 

2 2.52 2.1 

3 3.52 2.13 

4 4.43 2.09 

5 5.3 2.08 

6 6.3 2.11 

7 7.05 2.08 

8 7.81 2.05 

9 8.6 2.04 

10 9.4 2.02 

11 10.4 2.05 

12 11.6 2.06 

13 12.52 1.99 

14 12.84 2.03 

15 13.92 2.02 

16 14.74 2.15 

17 15.67 2.04 

18 16.53 2.08 

19 17.3 2.03 

20 18.59 2.05 

21 19.07 2.09 

22 20.1 2.14 

23 20.94 2.08 

24 21.55 2.08 

25 22.87 1.96 

26 23.98 2.14 

27 24.77 2 

28 24.77 2.05 

29 26.54 2.08 

30 27.02 2.02 

D. Demonstration 

The data used for the demonstration process is data that is 

different from the dataset. There are two types of data used as 

TABLE III. CAMERA SPECIFICATION FOR OBJECT DISTANCE AND WIDTH 

ESTIMATION 

Parameter Spesification 

Frame Height 1280 Pixels 

Frame Width 720 Pixels 

Vertikal FOV 50° 

Horizontal FOV 77° 

 

 
Fig. 97 Demonstration of photo detection results. 
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input data, namely photos and videos. The results will be 

displayed in the form of photos and snippets of images from 

the video. Testing the Mask R-CNN algorithm for photo 

produces four outputs, namely bounding box, segmentation 

instance, class, and confidence level of the detected object 

and for video it also produce the estimation of distance and 

width of detected object. Each photo will be processed by the 

model to get object detection in each photo. The results of the 

demonstration are shown in Fig. 9, for the demonstration on 

photo and the results of the video detection demonstration are 

shown in Fig. 10. 

E. Detection rate 

The detection speed test is carried out using the hardware 
used in the training process with the specifications in Table V. 
This test is carried out with three different inputs, the speed of 
detecting images with single objects, images with multiple 
objects, and video. Pictures and videos are taken using a 
smartphone camera. The average detection speed is 0.29 
which is equivalent to 3.45 frames per second (fps). 

IV. RESULT ANALYSIS 

In the training process, the value of the training loss 

decreases constantly. However, at epochs 1, 16, and 21 the 

training loss is very high. This is because there is a change in 

the training stage, so there is an increase in loss before it 

decreases again. The best epoch is the 21st epoch because it 

has the highest score for all the validation parameters, with 

0.81 for mAP, 0.89 for mAR, and 0.86 for F1 score. The 

mAP, mAR, and f1 scores obtained show good values 

because the dataset used was created manually. To detect 

video, there is no big difference compared to photo detection, 

where in photo detection, the detection speed value is 0.2869 

seconds and object detection in the video is 0.2901 seconds 

per frame. 

V. CONCLUSION 

After conducting a series of tests on the Mask R-CNN 
algorithm, several conclusions can be drawn: 

1. In certain frames, there are some false positive. Some 
of the factors can be in the form of similarity of 
features from one class to another. 

2. Estimation are influenced by the size of the bounding 
box, where the bounding box can be larger than the 
object size, thereby reducing the accuracy of 
estimating the distance and width of the object. 

3. The detection speed of the algorithm is in the range 
of 0.29 s, equivalent to 3.45 fps. The detection speed 
is influenced by the hardware specifications used to 
perform the detection and the frame size of the 
detected input. 

There are rooms for improvement in this research. For 
future work, the writer suggests to consider the following 
things: 

1. Addition of detected object class. 

Currently, the algorithm is only trained to detect 
three detected objects, cars, motorcycles, and people, 
so it still cannot detect other objects. The addition of 
detection objects can be in the form of traffic signs, 
potholes in the road, speed bumps, and so on. 

2. Sensor integration 

The focus of the current algorithm is to detect objects 
so that the position of the sensor with the detected 
object cannot be carried out. So the addition and 
integration with other sensors such as RADAR, 
LiDAR, or ultrasonic can be used to determine the 
location of objects. 

3. Dataset 

Although a good evaluation value has been obtained, 
with an mAP of 0.89, the test and training data were 
made under normal conditions with sunny weather 
and good lighting. So it can be added data and tested 
with different conditions. 

4. Addition of detected parameters 

Currently, the algorithm can only generate detection 
in the form of a bounding box, class, segmentation 
instance, object distance from the camera, and object 
width. So that in the future it can be added to produce 
position, speed, and dimension parameters in the 
form of length and width. 
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