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Abstract—Missile has to be controlled and follow the 

commanded guidance in order to make its flight hit the target. 

Since missile has a nonlinear characteristic and coupled dynamic 

equation, controlling a missile has become more complex. Linear 

Quadratic Tracking (LQT) is one of optimal control theory 

where its objective is to make the output of a system tracks its 

reference as close as possible while minimize or maximize a 

desired performance index. In this paper, an autopilot for missile 

is designed which consists nonlinear state feedback decoupler 

and LQT controller. Pursuit Guidance is used for the guidance 

law. A missile-target engagement simulation is created using 2 

kinds of target; static target and dynamic target. By using static 

target, the mean of the closest distance between missile and the 

target is 0.45 meters and by using dynamic target the mean of the 

closest distance between missile and the target is 2.562 meters. 

Keywords—guided missile; Linear Quadratic Tracking; 

Nonlinear State Feedback Decoupler; Pursuit Guidance; 

I.  INTRODUCTION 

In military, missile is a rocket which can be controlled 
directly or automatically to find the target and intercept it. In 
order to make sure the missile hit the target, missile has to be 
controlled to always follow reference created by the guidance 
law. By using aerodynamic forces, missile can make turns 
when it is flying in the air. The missile can do so by deflecting 
its fin. Then, by controlling the missile’s fin, we can control the 
missile’s movement while it is flying. Difficulty to design the 
controller arises because missile has nonlinear characteristic 
and coupled dynamic equation 

Optimal control theory is one of modern control theory. 
The objective in optimal control theory is determining an 
appropriate control signals that will makes the output of the 
system satisfy the physical constraints and at the same time, 
minimize or maximize some given performance index [1]. By 
looking at the objective, there are 2 kinds of optimal control 
case; regulator case and tracking case. If the system is a linear 
system and the desired performance index is in quadratic form, 
these 2 cases before known as the Linear Quadratic Regulator 
(LQR) and Linear Quadratic Tracking (LQT). Since the missile 
needs to always follow a certain reference, the desired 
controller falls into the tracking case. 

In order to make the missile, which has nonlinear 
characteristic and coupled dynamic equation, can be controlled 

by LQT, which demands a linear system, a nonlinear state 
feedback decoupler is designed. This decoupler is used to 
remove the coupled characteristic of the missile and linearize 
the missile’s system. 

II. SYSTEM DESIGN 

A. Coordinate System [3] 

Coordinate system adapted in this paper follows the right-
handed rule, where the positive x-axis is along the missile’s 
longitudinal axis, the positive y-axis points to the right, and the 
z-axis is positive to down direction, which is perpendicular 
with x-axis and y-axis. The earth will be referenced as the 
inertial coordinate system and the missile will be referenced as 
the body coordinate system. Earth coordinate system and 
missile coordinate system respectively will be denoted by (Xe, 
Ye, Ze) and (Xb, Yb, Zb). Earth coordinate system and missile 
coordinate system illustrated in Fig. 1. 

Fig. 1. Earth coordinate system and missile coordinate system 

Euler angles is used to represent the missile’s attitude in the 
earth coordinate system. Their notations are φ for roll 
movement, θ for pitch movement, and ψ for yaw movement. 

B. Missile’s Mathematical Model [2],[3] 

The missile’s equations of motion derived using Newton’s 
law [2]. Some assumptions are used to model the missile. First, 
missile has a rigid body, i.e. missile doesn’t change in shape 
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and size. Second, aerodynamic effect in the bX -axis is 

symmetry. Third, the missile’s mass doesn’t decrease or 
increase during its flight, i.e. the missile has a constant mass. 

Missile’s kinematics equation transforms the missile’s 
translational velocity from body coordinate system to earth 
coordinate system [3]. This relation is written using Euler 
angles as seen in (1). 
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Where: 

zyx  ,,  = Missile’s translational velocity in earth 
coordinate system 

wvu ,,  = Missile’s translational velocity in body 
coordinate system 

tsc ,,  = Abbreviation of cosine, sine, and tangent 

There are 2 kinds of velocity in missile’s dynamics 
equation; translational velocity and rotational velocity. 

Missile’s translational velocity ( bV ) is a vector consists of 

missile’s velocity in missile’s coordinate system, denoted 

by wvu ,, . In the other hand, missile’s rotational velocity ( bω ) 

is a vector consists of missile’s rotational velocity for each axes 
in body coordinate system, denoted by rqp ,, . The missile’s 

velocity magnitude is written in (2). 

 bmV V  

Missile’s dynamic equation consists of translational 
dynamic equation and rotational dynamic equation. The 
missile’s translational dynamic equation states the forces acting 
on the missile in the body coordinate system so that the missile 
will experience acceleration. Missile’s translational 
accelerations is written in (3) [2]. 
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Where: 

zyx FFF ,,  = Forces acting on the missile in body 
coordinate system 

m  = Missile’s mass 

Forces acting on the missile itself consist of the Thrust, 
gravitational force, and aerodynamic force [4]. Then, the forces 
acting on the missile is written in (4). 
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Where: 

Thrust  = Forces acting on the missile in body coordinate 
system 

g  = Gravitational acceleration 

Q  = Dynamic pressure ( 2

2

1
mV ) 

  = Air density 

S  = Missile’s surface area 

xC  = Aerodynamic drag force coefficient 

yC  = Aerodynamic side force coefficient 

zC  = Aerodynamic lift force coefficient 

The aerodynamic force coefficients ( zyx CCC ,, ) are 

affected by Angle of Attack, Sideslip angle, Mach number, and 
the missile’s fin deflection angle [4]. These coefficients then 
can be written in (5). 
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Where: 

  = Angle of Attack (
u

w1tan  ) 

  
= Sideslip angle (

mV

v1sin 
) 

M  
= Mach number (

340

mV
) 

r  = rudder deflection angle 

e  = Elevator deflection angle 

Missile’s rotational acceleration on each axes in body 
coordinate system is written in (6) [2]. From (6), the aileron 

( a ), rudder ( r ), and elevator ( e ) is the missile system’s 

input. 
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Where: 

d  = Missile’s diameter 

zyx III ,,  = Missile’s moment of inertia on each axes in 
body coordinate system 
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C. Missile’s Autopilot 

The purpose of the missile’s control system or also known 
as missile’s autopilot is to ensure the missile’s stability and 
performance. The autopilot also has to fly the missile right to 
the designed location or straight to the target according to the 
signal generated by the guidance law used. 

1) Nonlinear State Feedback Decoupler [5] 
In state-space form, a nonlinear and coupled system can be 

written as in (7). 


Cxy

uxFxGx



 ),(),()( ttt
 

Where: 

x  = state vector 
u  = Input vector 

),( txG  = Nonlinear state matrix 

),( txF  = Nonlinear input matrix 

y  = Output vector 

C  = Output matrix 

Define a new state matrix A  which has constant form and 
decoupled, and a new input matrix B  which also has a 
constant form. A new state-space can be constructed from 
using these new matrixes in the form (8). 

 uBuBAxAxuxFxGx ˆˆ),(),()(  ttt  

Where û  is the new input vector. In order to make the 

system has a linear and decoupled form, then (9) has to be 
satisfied. 

 0uBAxuxFxG  ˆ),(),( tt  

If ),( txF  has an inverse or pseudoinverse, it is possible to 

make a linear and decoupled system by using (10), a new input 
into the system. The state-space diagram of the system using 
nonlinear state space feedback decoupler can be seen in Fig. 2. 

 )),(ˆ(),( tt xGuBAxxFu
1    

Since the desired controlled variable is missile’s heading, 
the equation which will become the system is the missile’s 
rotational dynamic equation. Decoupling process is done by 
feeding back the parameters which cause the missile has 
nonlinear characteristic. Linearization process is done by 
define new parameters so that the rotational dynamic equation 
resembles first order response. The new time constant must be 
reasonable enough for the system or else the system would 
break down. In order to reduce the likeability that the missile 
miss its target, the missile’s fins must have a fast response. 
Here the desired time constant is 0.1 seconds, for each axes in 
body coordinate system. Then, the new input for the rotational 
dynamic equation is (11). 

Fig. 2. System with nonlinear state feedback decoupler 
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2) Linear Quadratic Tracking (LQT) [6] 
The objective of LQT is to control the system so that the 

output of the system follows the desired output as close as 
possible while minimize or maximize some desired index 
performance. The steps to design a system using LQT is given 
below. 

a. Get the system’s state matrix A, system’s input matrix B, 
and system’s output matrix C. 

b. Determine the order and the values of matrix Q and matrix 
R. 

c. Find P, the solution of Riccati Algebraic Equation, using 
(12). The apostrophe sign means a transposed matrix. 

 0PBPBRQCCPAPA
1  

 
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d. Create Kalman Gain matrix using (13). 

 PBRK
1    

e. Create Following Model using (14). 

 )()()( ttt QrCV)BK(AV   

f. The optimal control signal which become the system’s 
input is given by (15). 

 )()()( ttt VBRKxu
1    

A state-space diagram of a system with LQT can be seen in 
Fig. 3. 

Fig. 3. A system with LQT 

Since the input of the system has been modified and 
become (11), the missile system has become linearized and 
decoupled. Now LQT can be used to become the controller for 
the missile model. The linearized missile model is designed in 
state-space form. The desired controlled variable included in 
the linearized missile model. The resulted state-space model 
can be seen in (16). 
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The missile needs to always follow the reference given in 
order to reduce the likeability to miss the target. So the 
designed matrix Q and matrix R is (17). The determinant of Q 
has to be big to reduce the error between the actual output 
(missile’s actual heading) and the desired output (missile’s 
desired heading). Matrix R left to be identity since we don’t 
focus to reduce the energy consumption. 
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D. Pursuit Guidance 

Pursuit Guidance will make the missile’s heading always 
pointing to the target after it is being launched, so the missile 
flies directly toward its target at all times. This guidance law 
will always try to remove the relative Line of Sight (LOS) 
angle between the missile and its target. Suppose the target’s 
position in earth coordinate system is denoted by xt, yt, zt and 
missile’s position in earth coordinate system is denoted by xm, 
ym, zm. Then the relative position of target to the missile is 
given in (18). The relative angle created between missile and 
the target can be seen at Fig. 4. 
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Fig. 4. Relative angle between missile and the target 

If the missile’s position and the target’s position are known 
very good, then the relative angle between the missile and the 
target can be found using simple trigonometry rule shown in 
(19) and (20). 
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Where: 

r  
= Relative pitch angle between missile and the target 

in Xe vs Ye plane. 

r  = Relative yaw angle between missile and the target 
in Xe,Ye vs Ze plane 

E. Target’s Position Prediction 

One disadvantage using Pursuit Guidance is the maneuver 
required by the missile increases as the missile comes closer to 
the target, and at the end of flight, missile has to make the 
sharpest maneuver so that it can intercept the target. Since the 
missile has limited maneuver capability, it is better to make the 
missile fly to the expected intercept position. After the missile 
launched, missile will try to predict where the target’s position 
at some time in the future by using the past target’s positions. 
The output of this prediction will become input for the 
guidance.  

The missile gets information about target’s position every ts 
seconds. The target’s position at x(k – 2), x(k – 1), and x(k), 
where x(k – 2) is the first time target’s position known by the 
missile, are located using (21), or in matrix form in (22). 
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Where: 

tp  = Target’s position 

tv  = Target’s velocity 

ta  = Target’s acceleration 

By using the information about target’s positions and (21), 
the target’s position, velocity, and acceleration at x(k – 2) can 
be determined using (22). 
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Then the target’s position at k + 1, or ts second in the future, 
can be predicted using (23). 

 2164)1( ststt tatvpkx   

Since the target’s velocity and the missile’s velocity are 
known, new parameter called closing velocity can be 
determined using (24). Then a parameter called time-to-go, i.e. 
the time required for the missile to intercept its target, can be 
determined using (25). Finally, the intercept location between 
missile and the target can be predicted by (26). 
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Where: 

cV  = Closing velocity 

ztytxt vvv ,,  = Target’s velocity respectively on Xe-axis, 
Ye-axis, and Ze-axis. 

zmymxm vvv ,,  = Missile’s velocity respectively on Xe-
axis, Ye-axis, and Ze-axis. 

tgot  = Time-to-go. 

III. SIMULATION RESULTS 

The simulation run using 2 kinds of target; 
nonmaneuvering target and maneuvering target. Simulation 
using nomaneuvering target consists of 3 cases, each have 3 
scenarios, while simulation using maneuvering target consists 
of 3 cases, each with 2 scenarios. Some initial parameters set 
for the simulations are the missile has Thrust force 8000 
Newton for 5 seconds and decreased to 4000 Newton for the 
next 45 seconds, missile launched from coordinate (0,0,0) in 
earth coordinate system, missile fin’s deflection is limited from 
-60 degrees to +60 degrees, missile’s initial velocity and 
acceleration respectively are 0 m/s and 0 m/s2, the value of air 
density and gravity acceleration are constant, regardless how 
high the missile is, and the simulation is stopped when the 
missile reached the closest distance to the target. 

A. Nonmaneuvering Target 

The objective of simulation using nonmaneuvering target is 
to see how target’s distance affects the closest distance between 
missile-target. Initial heading (ϕ0, θ0, ψ0) in this simulation is (0 
45 45) degrees. Initial positions of the target are shown in 
Table 1. The resulted simulation graph is shown in Fig. 5, Fig. 
6, and Fig. 7. The closest distance between missile-target is 
shown in Table 2. 
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TABLE I.  INITIAL POSITION FOR NONMANEUVER TARGET SIMULATION 

Scenario Initial Position [Xe Ye Ze] Note 

1 [1000 500 500] Target changes position 

on Xe-axis, the others 

don’t change. 

2 [2000 500 500] 

3 [3000 500 500] 

4 [500 1000 500] Target changes position 

on Ye-axis, the others 

don’t change. 

5 [500 2000 500] 

6 [500 3000 500] 

7 [500 500 1000] Target changes position 

on Ze-axis, the others 

don’t change. 

8 [500 500 2000] 

9 [500 500 3000] 

Fig. 5. Simulation with nonmaneuvering target case 1 

Fig. 6. Simulation with nonmaneuvering target case 2 

Fig. 7. Simulation with nonmaneuvering target case 3 

TABLE II.  SIMULATION RESULT WITH NONMANEUVERING TARGET 

Scenario 
Flight Duration 

(seconds) 

Closest Distance 

(meter) 

1 7.32 0.3718 

2 10.35 0.6101 

3 13.40 0.2594 

4 7.33 0.6593 

5 10.37 1.1940 

6 13.41 0.0440 

7 7.60 0.4383 

8 11.50 0.0863 

9 14.70 0.3627 

Average 10.66 0.4473 

 

By looking at the Fig. 5, Fig.6, and Fig.7, in all scenarios 
the missile moves towards the target. It is seen by the graph 
that the relative distance between missile-target is decreasing 
while the time goes on. By looking at Table 2, the closest 
distance created between missile and the target is close. It can 
be seen from the average closest distance between missile-
target is less than 0.5 meters. Then it can be concluded that the 
designed autopilot for the missile works good with 
nonmaneuvering target. 

B. Maneuvering Target 

The objective of simulation using maneuvering target is the 
same as the nonmaneuvering target before. Initial heading (ϕ0, 
θ0, ψ0) for this simulation is (0 60 0) degrees. Initial positions 
of the target are shown in Table 3. The resulted simulation 
graph is shown in Fig. 8, Fig. 9, and Fig. 10. The closest 
distance between missile-target is shown in Table 4. 

TABLE III.  INITIAL CONDITIONS FOR MANEUVERING TARGET 

SIMULATION 

Scenario 
Initial 

Position (m) Velocity (m/s) Acceleration (m/s2) 

1 [1000 1000 1000] [0 -50 0] [0 0 0] 

2 [1000 1000 1000] [0 -100 0] [0 0 0] 

3 [1500 0000 0000] [-50 0 40] [0 0 0] 

4 [1500 0000 0000] [-50 0 40] [-5 0 0] 

5 [1000 1000 1000] [-50 -50 30] [0 0 0] 

6 [1000 1000 1000] [-50 -50 30] [8 8 0] 

 

Fig. 8. Simulation with maneuvering target case 1 
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Fig. 9. Simulation with maneuvering target case 2 

Fig. 10. Simulation with maneuvering target case 3 

TABLE IV.  SIMULATION RESULT WITH MANEUVERING TARGET 

Scenario 
Flight Duration 

(seconds) 

Closest Distance 

(meter) 

1 8.81 1.4060 

2 8.85 0.6871 

3 9.46 2.1270 

4 8.89 4.3470 

5 8.81 2.7220 

6 13.47 4.0820 

Average 9.715 2.5619 

 

By looking at Fig.9 and Fig. 10, the missile fly towards the 
target. Looking at Fig. 11, the missile seems have difficulty to 
reach the target, but eventually it did. This could happen 
because the target has relatively high initial acceleration. Then 
it is possible the missile could not hit the target if the target has 
faster velocity than the missile itself. By looking at Table 4, the 
average closest distance created between missile and the target 
is 2.562 meters. It is worse compared with the simulation with 
nonmaneuvering target. Flight duration in scenario 6 is 
relatively longer than other scenarios. Looking at the initial 
conditions, this could happen because the target is moving 
away from the missile while having acceleration. However, the 
target still can be intercepted. 

IV. CONCLUSION 

The missile system which basically has nonlinear and 
coupled characteristics can be linearized and decoupled using 
nonlinear state feedback decoupler. After being linearized, 
LQT is connected to the new system to become the controller. 
It is shown from the simulation results that the designed 
autopilot works well, proven by the average closest distance 
between missile-target for nonmaneuvering target is 0.45 
meters, and for maneuvering target is 2.56 meters.  
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