HVDC Transmission Placement Study to Increase Critical Clearing Time Using Sensitivity Analysis

I Gede Dyotha Yogadipha Bagas Department of Electrical Engineering Institut Teknologi Sepuluh Nopember Surabaya, Indonesia dyotha.yogadipha@gmail.com Ardyono Priyadi Department of Electrical Engineering Institut Teknologi Sepuluh Nopember Surabaya, Indonesia priyadi@ee.its.ac.id Vita Lystianingrum Department of Electrical Engineering Institut Teknologi Sepuluh Nopember Surabaya, Indonesia vita@ee.its.ac.id

Abstract- Stability is the ability to return to normal conditions after a disturbance. High Voltage Direct Current (HVDC) transmission can solve voltage stability problems that occur in ac systems, reduce the failure current, and increase the reserve of electric power. Time Domain Simulation (TDS) is a popular method for calculating Critical Clearing Time (CCT). To calculate load flow sensitivity, use the load flow sensitivity analysis command in Powerfactory 15.1. The variable considered in this research is dq/dP. This research is concerned with increasing the CCT value in the most optimal AC/DC transmission system based on the sensitivity analysis method. By taking several samples that have high sensitivity values, namely line 8-9 to 7-8 with an average cct change value of 0.555 s, medium values, line 5-8 to 9-6 have an average cct change of 0.234 s, and low from line 6-4 to 9-4 with an average change of 0.109 s. The data above shows that a channel with a large sensitivity value will provide a higher increase in cct value compared with a low sensitivity value when paired with an HVDC.

Keywords— critical clearing time (cct), high voltage direct current, sensitivity analysis, transient stability.

I. INTRODUCTION

Transient stability has an important role in maintaining system protection, such as determining whether the system remains stable or not after a major disturbance. These disturbances can be in the form of sudden load changes, disturbances to generators, disturbances to transmission lines, and so on.

High Voltage Direct Current (HVDC) transmission is a type of electricity transmission using high voltage direct current as the source. HVDC has many benefits compared to High Voltage Alternating Current (HVAC) under certain conditions, including efficient and relatively stable power losses with the same power rating.

Time Domain Simulation (TDS) or parameter sensitivity, to calculate CCT [1]. Numerical simulation or Time Domain Simulation (TDS) is a popular method for calculating Critical Clearing Time (CCT). This method is known as the most accurate method because the calculation uses numerical integration of the specified initial conditions.

Load flow sensitivity analysis is used to determine the voltage stability of a network. The sensitivity method can be used to determine the state variable solution relationship of the differential equation during severe disturbance, stability limits, critical engine acceleration area and deceleration area with respect to power changes and transformer ratio changes [2].

II. Methods

A. Transient stability

Transient stability is the ability of the system to maintain a synchronous state after a sudden major disturbance. Transient stability involves shifting the angle of the generator rotor so that the transient stability is included in the stability of the rotor angle. Electromechanical oscillations in electric power systems are closely related to the problem of rotor angle stability. The fundamental factor that causes the stability of the rotor angle is the power output of the synchronous generator which differs from each other when the rotor is isolated. The power flowing from the generator to the motor is a function of the angle (δ) between the rotors of the two machines. The difference in angle is caused by the internal angle of the generator, the internal angle of the motor, and the difference in angle between the terminal voltage of the generator and the motor. The greater the value of the rotor angle, the power to be distributed will increase to a maximum when the angle is 90°.

B. High Voltage Direct Current

HVDC is a type of electricity transmission using high voltage direct current. HVDC has many benefits compared to HVAC or under certain conditions. HVDC consists of transmission poles, conductors, insulators, and terminal equipment. DC lines can carry as much power with two conductors as AC lines with three conductors of the same size. *Therefore*, for a given power level the DC line requires a smaller and simpler RoW (Right of Way). Broadly speaking, HVDC links are classified into three categories, monopolar link, bipolar link, and homopolar link [3].

C. Power Flow Sensitivity Analysis

To determine the magnitude of the relative voltage correction and vector angle to the active and reactive power vectors, a power flow sensitivity analysis is proposed using power flow studies as in [4]. The Jacobian matrix is used to determine the sensitivity analysis index. The relationship between the Jacobian matrix and the power equation can be written as [5].

$$\begin{bmatrix} J_{\mathcal{P}\mathcal{B}} & J_{\mathcal{P}\mathcal{V}} \\ J_{\mathcal{Q}\mathcal{B}} & J_{\mathcal{Q}\mathcal{V}} \end{bmatrix} \begin{bmatrix} \partial \mathcal{S}_i \\ \partial |\mathcal{V}|_i \end{bmatrix} = \begin{bmatrix} \partial \mathcal{P}_i \\ \partial \mathcal{Q}_i \end{bmatrix}$$
(1)

© 2024 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. **How to cite**: Bagas, G. D. Y., Priyadi, A., Lystianingrum, V. (2024). HVDC Transmission Placement Study to Increase Critical Clearing Time Using Sensitivity Analysis. *JAREE (Journal on Advanced Research in Electrical Engineering)*, 8(1).

III. RESULTS AND DISCUSSION

Researchers used DigSilent Power Factor 15.1 software to carry out simulations related to research. The research object of this research is the 9 bus transmission system with 3 generators and the 14 bus transmission system with 5 generators. In the early stages of the research, the researcher looked for d ϕ /dP, d ϕ /dQ (written as dphi/dP, dphi/dQ in Powerfactory 15.1), dV/dP and dV/dQ using sensitivity analysis. Next, look for the critical clearing time (cct) value for each bus at the initial conditions and when the HVDC channel has been installed. After all the data has been collected, an analysis is carried out to what extent is the relationship between the d ϕ /dP value to changes in the cct value from the initial conditions and after the HVDC channel is installed on each possible existing bus.

A. Transmission System

The system used to conduct research in this thesis is a system of 9 buses 3 generators and 14 buses 5 generators. All systems used are available in the DigSilent Power Factor 15.1 software.

Fig 1. 9 Bus 3 Generators System

Fig 2. 14 Bus 5 Generators System

B. Load Flow Sensitivities

The results obtained using the Sensitivity to a Single Busbar method. The simulation is carried out in turns from the bus that is the object of research. The following are the simulation results of the load flow sensitivities for buses 4 and 9 on the 9 bus 3 generator system.

TABLE 1. SENSITIVITY VALUES IN A 9 BUS 3 GENERATOR SYSTEM

Line	dphi/dP	dphi/dQ	dv/dP	dv/dQ
Line	(deg/MW)	(deg/MVar)	(p.u/MW)	(p.u/MVar)
45	0.031388	0.005759	0.000021	0.000258
46	0.031326	0.005003	0.000025	0.000308
47	0.031434	0.006322	0.000009	0.000116
48	0.031479	0.006859	0.000008	0.000107
49	0.031451	0.006525	0.000007	0.000087
54	0.031722	0.001358	0.000058	0.000260
56	0.039690	0.003470	0.000047	0.000216
57	0.067741	0.003668	0.000058	0.000286
58	0.062114	0.004803	0.000049	0.000217
59	0.053851	0.004336	0.000029	0.000104
64	0.031868	0.001493	0.000061	0.000306
65	0.040037	0.004594	0.000045	0.000212
67	0.046563	0.005047	0.000023	0.000118
68	0.053038	0.005477	0.000029	0.000161
69	0.061678	0.004314	0.000040	0.000209
74	0.031366	0.000580	0.000026	0.000116
75	0.066803	0.001119	0.000056	0.000284
76	0.045354	0.001326	0.000023	0.000119
78	0.086115	0.001095	0.000049	0.000292
79	0.071054	0.000925	0.000029	0.000110
84	0.031558	0.000596	0.000026	0.000108
85	0.061391	0.001328	0.000057	0.000215
86	0.051897	0.000895	0.000032	0.000163
87	0.086444	0.000164	0.000059	0.000293
89	0.089266	-0.001145	0.000059	0.000243
94	0.030996	0.000417	0.000005	0.000087
95	0.052254	0.000945	0.000018	0.000103
96	0.059621	0.000262	0.000010	0.000210
97	0.070300	0.000461	0.000012	0.000109
98	0.088216	-0.000032	0.000021	0.000242

TABLE 2. SENSITIVITY VALUES OF IN A 14 BUS 5 GENERATOR SYSTEM

Ling	dphi/dP	dphi/dQ	dv/dP	dv/dQ
Line	(deg/MW)	(deg/MVar)	(p.u/MW)	(p.u/MVar)
23	0.025407	0	0	0
24	0.022509	0	-0.0000026	0
25	0.020508	0	-0.0000027	0
32	0.026171	0	0	0
34	0.040406	0	-0.0000049	0
35	0.032738	0	-0.0000017	0
42	0.023032	0.000349	0	0
43	0.040395	0.001626	0	0
45	0.041854	-0.003730	0.00008952	0.000244
52	0.020861	0.000520	0	0
53	0.032522	0.001493	0	0
54	0.041772	-0.003251	0.0000806	0.000245

C. Critical Clearing Time In Initial Conditions

This chapter contains the amount of cct for each bus which is the object of research. To get the CTT value, the author uses the Time Domain Simulation (TDS) method. TABLE 3. CCT VALUE BUS 4 TO 9 SYSTEM 9 BUS 3 GENERATOR

Bus	CCT (s)
4	0.440
5	0.725
6	0.680
7	0.331
8	0.265
9	0.156

TABLE 4. CCT value bus 2 to 5 system 14 bus 5 generator

Bus	CCT (s)
2	0.429
3	0.430
4	0.459
5	0.518

D. Critical Clearing Time After Installing HVDC Lines

After installing the HVDC line at a predetermined point, we will then look for the cct value at all installation points. The following are the simulation steps carried out to find the maximum Active Power Set point value for each HVDC line.

Table 5. Maximum Active Power Set point value for 9 bus 3 generator system

Line	Power (MW)
45	420
46	200
47	280
48	160
49	100
54	180
56	220
57	350
58	170
59	110
64	190
65	240
67	210
68	230
69	130
74	140
75	260
76	170
78	220
79	110
84	130
85	210
86	170
87	350
89	160
94	140
95	190
96	190
97	270
98	350

GENERATOR SYSTEM				
BUS	Daya			
23	140			
24	410			
25	410			
32	170			
34	200			
35	180			
42	230			
43	150			
45	590			
52	220			
53	140			
54	460			

After knowing the maximum active power set point value for each HVDC line, a simulation is carried out to find the cct value using the TDS method.

TABLE 6. MAXIMUM ACTIVE POWER SET POINT VALUE FOR 9 BUS 3

TABLE 7. CCT VALUE IN SYSTEM 9 BUS 3 GENERATOR AFTER HDVC INSTALLATION

	Critical Clearing Time (s)					
Line	Bus	Bus	Bus	Bus	Bus	Bus
	4	5	6	7	8	9
45	0.841	2.168	2.139	0.396	0.301	0.170
46	0.467	0.717	0.678	0.325	0.264	0.163
47	0.879	1.204	1.865	0.396	0.304	0.172
48	0.266	0.830	4.298	0.286	0.224	0.160
49	0.000	0.275	0.331	0.231	0.329	0.159
54	0.286	0.138	1.374	0.168	0.189	0.145
56	0.586	2.228	2.398	0.373	0.292	0.171
57	0.906	2.068	2.627	0.440	0.312	0.170
58	0.470	0.851	0.623	0.354	0.280	0.164
59	0.496	1.117	3.628	0.478	2.138	0.168
64	0.555	1.150	2.706	0.344	0.266	0.151
65	0.744	2.084	3.208	0.427	0.294	0.156
67	0.820	2.078	3.198	0.440	0.302	0.160
68	0.795	2.120	2.946	0.440	0.316	0.171
69	0.277	1.052	0.854	0.358	0.549	0.168
74	0.000	0.000	0.000	0.000	0.000	0.000
75	0.422	0.889	0.995	0.342	0.271	0.155
76	0.444	0.841	1.793	0.343	0.278	0.163
78	0.389	0.662	0.497	0.336	0.274	0.161
79	0.218	0.098	4.548	0.227	0.110	0.165
84	0.198	0.718	0.618	0.238	0.213	0.157
85	0.533	2.208	2.694	0.387	0.283	0.149
86	0.489	1.051	2.580	0.359	0.280	0.156
87	0.835	2.108	3.238	0.617	0.324	0.151
89	0.876	1.548	3.692	0.350	0.502	0.171
94	0.120	0.478	0.768	0.310	0.252	0.131
95	0.489	2.218	2.666	0.326	0.244	0.133
96	0.431	0.777	1.858	0.303	0.241	0.137
97	0.671	2.148	3.278	0.417	0.266	0.131
98	0.600	2.238	3.308	0.416	0.279	0.137

TABLE 8. CCT value in system 14 bus 5 generator after HDVC installation

Lina	Critical Clearing Time (s)					
Line	Bus 2	Bus 3	Bus 4	Bus 5		
23	0.434	0.430	0.476	0.545		
24	0.588	0.506	0.511	0.656		
25	0.564	0.511	0.538	0.595		
32	0.443	0.365	0.463	0.525		
34	0.459	0.407	0.484	0.552		
35	0.453	0.392	0.490	0.539		
42	0.450	0.448	0.435	0.508		
43	0.449	0.435	0.432	0.505		
45	0.581	0.565	0.646	0.823		
52	0.451	0.450	0.454	0.482		
53	0.456	0.436	0.451	0.479		
54	0.543	0.495	0.556	0.655		

E. Analysis of the Relationship of Sensitivity to Changes in CCT Values

This chapter will describe the relationship between the value of sensitivity $(\partial \phi / \partial P)$ and changes in cct values. The initial stage is to find the difference in the cct value of each bus after and before the HVDC channel is installed in the various possibilities. After that, we look for the average cct change in each HVDC line. Data in table 9 and 10 is sorted based on the dphi/dP value from the largest to the smallest.

TABLE 9. AVERAGE CHANGE OF CCT IN 9 BUS 3 GENERATOR SYSTEM

	dnhi/dD	Power	Average
Line	(deg/MW)		Change of
	(deg/WIW)		cct (s)
89	0.08926628	160	0.757
98	0.08821625	350	0.730
87	0.08644402	350	0.779
78	0.08611591	220	-0.046
79	0.07105444	110	0.462
97	0.07030048	270	0.719
57	0.06774113	350	0.654
75	0.06680371	260	0.080
58	0.06211487	170	0.024
69	0.06167843	130	0.110
85	0.06139105	210	0.610
96	0.05962138	190	0.192
59	0.05385198	110	0.905
68	0.05303827	230	0.669
95	0.05225428	190	0.580
86	0.05189796	170	0.386
67	0.04656321	210	0.734
76	0.04535434	170	0.211
65	0.04003745	240	0.719
56	0.03969038	220	0.575
64	0.03186818	190	0.429
54	0.03172280	180	-0.050
84	0.03155852	130	-0.076
48	0.03147911	160	0.578
49	0.03145164	100	-0.212
47	0.03143496	280	0.371
45	0.03138863	420	0.570
74	0.03136610	140	-0.433
46	0.03132644	200	0.003
94	0.03099608	140	-0.090

Based on table 9, the line with the highest sensitivity value is line 8-9 with a value of 0.08926628 and the line with the lowest sensitivity is 9-4 with a value of 0.03099608.

The researcher also divided the data into 3 categories and took several samples from channels that had high sensitivity values, namely line 8-9, 9-8, 8-7, and 7-8 with an average cct change value of 0.555 s, middle values, namely line 5-8, 6-9, 8-5, and 9-6 had average change in cct 0.234 s, and lower from line 6-4, 5-4, 8-4, 4-8, 4-9, 4-7, 4-5, 7-4, 4-6, and 9-4 with an average change of 0.109 s.

TABLE 10. Average Change of cct in 14 bus 5 generator system

Saluran	dphi/dP (deg/MW)	Power (MW)	Average Change of cct (s)
45	0.04185443	590	0.195
54	0.04177298	460	0.103
34	0.04040664	200	0.017
43	0.04039565	150	-0.004
35	0.03273863	180	0.010
53	0.03252217	140	-0.004
32	0.02617191	170	-0.010
23	0.02540740	140	0.012
42	0.02303211	230	0.001
24	0.02250906	410	0.106
52	0.02086154	220	0.000
25	0.02050830	410	0.093

With few data it is enough to divide 2 into groups with high sensitivity values from channels 4-5 to 5-3 with an average change in cct of 0.053 s and a low sensitivity group from channels 3-2 to 2-5 with an average change in cct 0.034.

IV. CONCLUSION

Based on the analysis of the two systems, it shows that the channel with a large sensitivity value will give a higher change in cct value compared to the other with a lower value when paired with an HVDC line.

REFERENCES

- Acosta, M. N., Gomez, E., Gonzalez-Longatt, F., Andrade, M. A., Vazquez, E., & Barocio, E. (2021). Single Value Decomposition to Estimate Critical Clearing Time of a Power System Using Measurements. *IEEE Access*, 9, 125999–126010. https://doi.org/10.1109/ACCESS.2021.3111006
- [2] Wu, Z. Q., Wang, Y. N., Chen, H. H., Tang, W. W., & Pan, L. Q. (2005). Transient stability sensitivity analysis. *Electric Power Components and Systems*, 33(3), 247–261. https://doi.org/10.1080/15325000590474357
- [3] Kundur Prabha. (1994). Power System Stability And Control. *McGraw-Hill Education*.
- [4] Murty, P. S. R. (2017). *Power Systems Analysis (Second Edition)*. Butterworth-Heinemann.
- [5] Peanviboon, K., & Tayjasanant, T. (2021). Multiple Distributed Generation Allocation in Radial Distribution Networks by Considering Loss Reduction and Curtailment. *IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2021 December,* 329–334. https://doi.org/10.1109/TENCON54134.2021.9707327