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Abstract—Speaking is a multimodal phenomenon that has 
both verbal and non-verbal cues. One of the non-verbal cues 
in speaking is the facial movement of the subject, which can 
be used to find the letter being spoken by the subject. Previous 
research has been done to prove that lip movement can translate 
to vowels for Bahasa Indonesia, but detecting the whole facial 
movement is yet to be covered. This research aimed to establish 
a CNN-BiLSTM model that can learn spoken vowels by reading 
the subject’s facial movements. The CNN-BiLSTM model yielded 
a 98.66% validation accuracy, with over 94% accuracy for all 
five vowels. The model is also capable of recognizing whether 
the subject is currently silent or speaking a vowel with 98.07% 
accuracy. 

 

Keywords— bahasa indonesia vowel, BILSTM, CNN, face 
movement, recognition 

 
I. INTRODUCTION 

Speaking is a multimodal phenomenon that has both verbal 

and non-verbal cues [1]. As a verbal-based communication, the 

speaking activity generated sound signals that can be analyzed. 

As such, much research that covers understanding a dialogue 

or monologue utilizes the signal that is generated by this 

activity [2]. However, this approach can be challenging when 

the sound data is inadequate due to issues such as ambient 

noise, low Signal-to-Noise Ratio (SNR), and microphone 

distance [3]. On the other hand, the non-verbal cues, such 

as the visual cue of the speaker, are yet to be deeply explored. 

The growth of computer vision field allowed better analysis 

of image-related problems, including the problem of non- 

verbal cues for speaking activity. Prom-on and Onsri discov- 

ered that there is a correlation between facial movement and 

sound acoustic being produced [4], which validates the nature 

of speaking as a multimodal phenomenon. Another non-verbal 

option used for determining spoken words is the lip-reading 

method [5]. These information translated to the potential of 

utilizing computer vision to assist research related to speaking 

detection and recognition problems. 

One way of utilizing the computer vision field in speaking 

activity is making visual recognition a complementary aspect 

of the existing sound signal approach. Kumatani and Stiefel- 

hagen showed in their research with a result that shows the 

capability of recognizing the speaker’s words improves signif- 

icantly when both sound and visual cues are combined [6]. 

Another research done by Isobe et al for Japanese language 

also combined both sound and visual cues [7]. 

However, this approach still had a dependency on sound 

data, making it susceptible to sound data issues. An approach 

that focuses on visual cues become a consideration to min- 

imize reliance on sound data, which translated to reduced 

susceptibility against sound data issues. This visual focused 

approach is known as visual-only approach. 

Visual-only approach, where spoken word or letter is de- 

cided solely based on visual cues, spanned across multiple 

languages, such as English [8], Japanese [9] and Bahasa 

Indonesia [10]. For Bahasa Indonesia, by focusing on the 

nature of lip motion acting as a visual cue of the speaker, 

Maxalmina concluded that it is possible to detect specific 

vowels with the highest accuracy of 84%. 

Maxalmina’s lip motion approach shows that visual cues can 

be as useful to determine specific vowels that are spoken by a 

subject. However, the selection of lip motion as the approach 

rendered information that might be present outside of the lip 

area, such as the cheek, jaw, and other areas of the face, not 

covered. 

This research attempted to create a model to detect spoken 

vowels by utilizing face movement, including but not limited 

to the cheek and jaw areas of the face. The model created 

with this research is aimed to attain an accuracy better than 

Maxalmina’s lip motion. 

II. METHODS 

An overview of the research method can be found in Fig 1. 

The Input for this research is dataset of images. The images 
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Fig. 1. Research Method 

 

within the dataset is then processed utilizing MediaPipe library 

[11] to take the face landmarks extracted from the images. 

The extracted face landmark features are then processed 

with a time distribution model to get the key features needed 

for the next step. BiLSTM is utilized to understand the 

sequence of key features. These sequences are then categorized 

into one of the five vowels in Bahasa Indonesia, or a silent 

state to denote the moment a user is not speaking. Thus, the 

final output of this method is either one of the vowels or a 

silent state. 

 
A. Dataset 

The dataset for this research is a self-made dataset of images 

with an image size of 480p per image in the form of photo 

frames. A total of 33,091 images are taken for the dataset, split 

into 6 categories representing all five vowels and an additional 

state where the speaker is silent. 

The distribution of the image consisted of 4,360 images for 

letter A, 5,991 images for letter E, 5,169 images for letter I, 

5,024 images for letter O, 5,980 images for letter U, and 6,567 

images for the silent state. This distribution is represented in 

table I. The dataset has no augmented data, thus each data is 

taken in its original form. 

To gather all these images, a laptop camera is used to get a 

video record, configured at 30fps. The video is then split apart 

to generate images with 30 images representing a one-second 

recording of the video. There are a total of 60 videos, 10 

for each vowel and 10 for the silent state, each with varying 

length. These original images are taken at several locations 

with one subject. All of them are colored with enough contrast 

to differentiate the subject and the background. In addition, the 

subject always faces the camera, with the head turned around 

45 degrees to the left or right on some images to give the 

model understanding of the vowel spoken by the subject even 

when not directly facing the camera. An example of the image 

is provided in Fig 2. 

Speaking is an activity that happens over some time, hence it 

can be viewed as a time-based problem. Since facial movement 

is an image problem, Speaking activity can be viewed as both 

a time and image problem. 

To fit the need for a time-based form for the gathered data 

of images in table I, the data is merged into sets of images 

for each input where each of the image sets consisted of 30 

images representing 1 second of time based on 30 fps used in 

the original data recording. The data is shifted every 3 images 

to show a difference in time, creating small gaps that allow 

the model to predict what happened between those frames. 

Table II provides the number of data for each vowel. 

TABLE I 
FACE DATA FOR EACH VOWEL 

 
Letter Total Images 

A 4,360 

E 5,991 

I 5,169 

O 5,024 

U 5,980 

- 6,567 

Total 33,091 

 

 
Fig. 2. Example of Image in the Dataset 

 

 

Since the original data have differences in the number of 

images available, the CNN-LSTM data is also imbalanced for 

each letter. The data shrunk by approximately 66% of the 

original amount due to the frame gap implementation, but it 

is necessary to note that each data contains 30 images, some 

of which are the same in a different order in each image set 

to represent the concept of moving in time. 

B. Face Landmark 

MediaPipe is utilized to assist in generating the face land- 

marks from the original image, which is needed for extracting 

key features to detect the vowel being spoken, or if the user 

is currently silent or speaking. 

To generate the landmark, each image in the set of images 

on table II is then processed with MediaPipe to generate the 

landmarks on dark background as shown in Fig 3. The gen- 

eration process consisted of the subject’s face in each image 

being filtered out from the background, creating information 

for facial features that represented the subject’s face in the 

original image. 

The facial features are then mapped into a pitch-black image 

by connecting the facial features with white lines. This created 

a distinction in the resulting image as shown in Fig 3, where 
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TABLE II 
DATA  FOR  EACH  VOWEL  IN  TIME-BASED  FORM 

 
Letter Total Data 

A 1,444 

E 1,988 

I 1,714 

O 1,665 

U 1,984 

- 2,180 

Total 10,975 

 

 

 

 

 
 

Fig. 3. Face Landmark Process 

 

 

the background becomes pitch black while the subject’s facial 

features are colored white, making it easier to distinguish and 

be processed by the neural network. The image size of the 

new image is the same as the base image, which is 480p. A 

time-distributed result of this process is utilized for the next 

step, which is the feature extraction and selection. 

C. Feature Extraction and Selection (Time Distribution) 

The feature extraction and selection are done with a time- 

distributed convolution model provided in Fig 4. The landmark 

images are used as the input for feature extraction and selec- 

tion. 

There are four steps to select the best features, consisting of 

a 2D convolution, max-pooling, flattening, and then selection. 

The 2D convolution process extracted features from the image. 

Max-pooling then finds the best of these extracted, which 

are then flattened for selecting specific features for future 

predictions. 

The time distributed aspect is related to speaking as an event 

that happened over some time, hence there will be multiple 

face landmarks that received feature extraction and selection 

for the next step. 

D. BiLSTM 

Speaking is an activity that happened over some time, thus 

a form of neural network with back-propagation capability 

[12] is needed to allow the network to understand the infor- 

mation within a set of time. This opened a lot of options, 

such as Recurrent Neural Network (RNN) that has vanishing 

gradient problem [13], or the Long Short-Term Memory [14] 

which fixed the issue, but limited to remembering one-way 

sequences. 

Bidirectional LSTM, shortened as BiLSTM, has the advan- 

tage of understanding two-way sequences, while also averting 

the dangerous vanishing gradient problem. This helped the 

model to understand the whole sequence better for determining 

the vowel or silent state of the current sequence better than 

previous models. 

Fig 5 provided the BiLSTM process for this research. The 

result of feature extraction becomes the input of the BiLSTM, 

where the BiLSTM then processed the input into a sequence 

as the output that will be utilized for prediction as shown in 

Fig 6. 

The vowel prediction is selected with a Sigmoid activation. 

Selection of Sigmoid opposed to Softmax is due to an issue 

with bottlenecks within Softmax [15]. 

E. Vowels 

Vowels are voiced, central-oral friction-less sound when 

defined in a purely phonetic way. For linguists, the phonetic 

definition is considered complicated and never an exact corre- 

spondence with how some languages have cases of not exactly 

fulfilling the criteria that go with the basic definition provided 

[16]. For the specific case of Bahasa Indonesia, the definition 

is considered sufficient to define the vowels. 

Bahasa Indonesia vowels consisted of five letters. They are 

A, E, I, O, and U. Vowel E has two diacritics according to the 

recent Ejaan Yang Disempurnakan V, shortened as EYD V, 

convention [17]. Table III provided an example of each vowel 

at the start, middle, and end of a word according to the new 

convention, with vowel E having two lines, each line for one 

diacritic. 

EYD V convention overrides the previous convention of Pe- 

doman Umum Ejaan Bahasa Indonesia, shortened as PUEBI, 

as of 16 August 2022 [18]. The difference between both 

conventions for the vowel system lies in the interpretation 

of the letter E. The previous PUEBI convention stated vowel 

E had 3 diacritics, while the current EYD V stated vowel 

E only had 2 diacritics. However, this research, as well as 

Maxalmina’s research [10], does not account for the distinction 

of vowel E as a focus and treated all diacritics of vowel E as 

one vowel. 

Since vowels come as part of the words spoken by the sub- 

ject, the subject might not be speaking and remain silent. This 

state, if not defined, is capable of causing a misinterpretation 

of the vowel currently spoken by the subject. To avoid such 

misinterpretation, the silent state must be considered as part 

of the final output. 

As such, the vowels and a silent state are used as the final 

output from the whole process. This process will determine 

based on the previous processes whether the original input, 

which is a set of images, corresponded to one of the five 

vowels or if the subject is silent. In the overall design, this 

translated to the final output having six possibilities, five 

vowels, and a silent state as shown in Fig 6. For this research, 

the silent state is denoted as - (en dash). 
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Fig. 4. Features Extraction and Selection 

 

 

 

 
Fig. 5. BiLSTM Input and Process 

 

 
Fig. 6. Vowel Prediction 

 

 

III. RESULTS AND DISCUSSION 

A. Model Training and Tuning 

The final model for this research is provided by table IV. 

The model is trained with a distribution of 75% data for 

training and 25% data for testing using data from table II. 

There are several design choices for the model, such as 

LeakyRELU for feature extraction and selection, utilization 

of the Adam algorithm for the optimizer, Categorical Cross 

 
TABLE III 

BAHASA  INDONESIA  VOWELS  ACCORDING  TO  EYD V 
 

Vowel Start of Word Middle of Word End of Word 

a api padi lusa 

e* enak petak sore 
 emas kena tipe 

i itu simpan murni 

o oleh kota radio 

u ulang bumi ibu 

 
 

Entropy as the loss function, and the inclusion of a Dropout 

layer. 

The reason for selecting LeakyRELU over RELU for the 

convolution part lies in the dead neuron problem, part of 

vanishing gradient problems, where the neuron value becomes 

zero and rendered inactive [19]. The LeakyRELU solved this 

issue by adding a small value on inactive state [20]. 

On the other hand, the Adam algorithm is selected as the 

optimizer due to the computational efficiency, minimal mem- 

ory requirements, and considered well-suited for problems that 

are large in terms of data [21]. 

Categorical Cross Entropy is selected as the loss function 

due to the nature of this prediction task being categorical. 

There are six possible outputs for the final layer, which trans- 

lated to six possible results. The model assigns a prediction 

value to each of the six possible results, with the highest value 

selected as the predicted result. 

The dropout layer is included in the model to reduce the 

possibility of entering an overfitting state [22]. 

There is a major challenge with the CNN-BiLSTM model 

provided by table IV. The challenge is that the model is 

capable of trapping itself in local minima, causing the model’s 

accuracy to stagnate even after several epochs. However, this 

challenge can be overcome by tuning the model’s hyperpa- 

rameter, specifically the batch size utilized for training. 

Table V provided an overview of how the batch size 

influences the accuracy of both training and validation of 

the model. When batch size is raised, the level of accuracy 

increased significantly. The model is trained with a batch of 
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TABLE IV 
FULL MODEL 

 

Layer 
Layer Detail 

Filter/Unit Kernel Activation 
TimeDistribution Convo 2D 4 5 LeakyRELU 

TimeDistribution MaxPool 2D - - - 

TimeDistribution Flatten - - - 

TimeDistribution Dense 4 - LeakyRELU 

Bidirectional Sequential LSTM 8 - TanH 

Flatten - - - 

Dropout (0.2) - - - 

Dense 6 - Sigmoid 

 

 
2, 8, and 16 batches, with the model’s accuracy significantly 

improved when a higher batch number is used. 

When the batch size of 2 is used, the model is trapped 

within the 14% and 20% accuracy range, preventing the model 

from improving its prediction capability. This trapped in local 

minima is sometimes bypassed but created a lot of unreliability 

in the model training. 

A batch size of 8 allowed the model to perform better in es- 

caping the local minima. However, it took quite several epochs 

to improve the model’s accuracy, which improved gradually 

over time. Within the first 3 epochs, the model only reached 

41.15% accuracy and 46.38% validation accuracy. This result, 

however, showed that raising the number of batches is the right 

direction to improve the model’s performance. 

The best result comes from utilizing an epoch of 16, where 

the model attained an accuracy of 96.26% and validation 

accuracy of 98.66%, more than double the accuracy provided 

with a batch size of 8. The result indicated that this batch size 

is considered most suitable for the proposed model and 16 is 

selected as the model’s batch size. 

B. Best Result 

The best result, as shown in table V, is the one with a 

batch size of 16. A more detailed version of this training can 

be found in table VI which showed that the model gained 

significant accuracy improvement with each epoch, where the 

model reached over 90% accuracy by the third epoch and over 

90% validation accuracy by the second epoch. 

In addition, no mark of overfitting nor underfitting was 

shown with the validation loss descending faster than the 

training loss. Accuracy improvement is visible through the 

growth of both training and validation accuracy, yielding 

96.26% and 98.66% respectively for the model at the final 

epoch. 

The model is then tested against the entirety of data from 

table II. A summary of the result can be found in table VII. 

From the testing against the entire data, the model is found to 

be capable of predicting each vowel with an average accuracy 

of 97.66%. 

The model had a hard challenge with vowels A and E, 

yielding 94.53% and 94.62% accuracy respectively. These 

two vowels had the highest tendency to be misinterpreted 

as vowel U, with 4.22% and 4.83% errors for vowels A 

and E respectively. This showed that the model sometimes 

confused vowels A, E, and U to a degree, and had a harder 

time determining the exact vowel spoken by the subject if 

the subject’s facial features is too subtle for the model to 

differentiate between the three vowels. 

On the other hand, the model is capable of differentiating 

vowel I, O, and U with an accuracy of over 99%, showing 

an extreme level of accuracy in the detection of these three 

vowels. The best accuracy, however, is shown in determining 

vowel I and O, with the model misinterpretation of other 

vowels as these two, are very low, which translated to the 

model being truly capable of recognizing these two vowels 

with the highest accuracy. 

In addition, the model is capable of detecting whether the 

speaker is silent or speaking with an accuracy of 98.07% for 

data from a silent state. Furthermore, the model also never 

interpreted a speaking subject as silent, shown by all five 

vowels having 0% of them interpreted as a silent state by 

the model. 

The results showed that the model knows if the subject is 

speaking, but can be doubtful if the subject is silent if their 

facial movement indicated some form of attempt to speak a 

vowel, shown by the 2.93% total error across all five vowels 

for the silent state dataset. 

Fig 7 showed an example of a sequence when the sub- 

ject opening their mouth influences the model’s silent state 

interpretation. Within the entirety of the sequence, the subject 

mouth is opened over several frames, as if the subject is 

speaking, which caused the model to misinterpret the subject 

as speaking despite being silent. 

C. Comparison with Maxalmina Lip Motion Model 

One of the recent research closest to visual cues for Bahasa 

Indonesia is Maxalmina’s 3D CNN Lip Motion. It utilizes the 

lip motion for vowel prediction, while this research utilized 

the entire facial movement to predict the vowel. The CNN- 

BiLSTM model utilized in this research is a contrast to 

Maxalmina’s approach that utilized 3D convolution and relies 

completely on Convolutional Neural Network as shown in 

table VIII. A double fully connected layer is utilized to assist 

in predicting the vowel spoken by the subject after a 3-step 

3D convolution is done on the input image for Maxalmina’s 

Lip Motion. 

The level of accuracy in Maxalmina’s model [10] overall 

is 84% accuracy across all five vowels. However, that model 

does favor vowel U with a 9% error, while it has the highest 

error rate against vowel I with a 20% error. Table IX provides 

an overview of the error rate comparison of this model and 

Maxalmina’s lip motion model. 

The accuracy difference shown in table IX showed that 

the facial movement recognition approach this model took 

is advantageous when compared to a lip motion approach. 

By analyzing additional information provided by the entirety 

of the speaking subject’s face, the accuracy of prediction 

improved significantly. 

This significance can be found with the highest accuracy 

improved from 84% to 99.94%. In addition, this research 
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TABLE V 
PARAMETER  TUNING: BATCH  SIZE 

 
batch size 2 8 16 

epoch accuracy val accuracy accuracy val accuracy accuracy val accuracy 

0 17.83% 14.82% 19.63% 19.43% 38.16% 53.57% 

1 18.24% 19.08% 29.90% 37.34% 73.75% 91.49% 

2 17.33% 14.79% 41.15% 46.38% 96.26% 98.66% 

 

 
TABLE VI 

BEST  MODEL  PERFORMANCE 

 
epoch accuracy loss val accuracy val loss 

0 0.3816 1.5086 0.5356 1.1129 

1 0.7375 0.7052 0.9149 0.2732 

2 0.9626 0.1321 0.9865 0.0627 

 
TABLE VII 

CNN-BILSTM CONFUSION  MATRIX 

 

Target 
Predicted 

A E I O U - 
A 94.53% 0.90% 0.35% 0% 4.22% 0% 

E 0.50% 94.62% 0.05% 0% 4.83% 0% 

I 0.06% 0.57% 99.53% 0% 0.41% 0% 

O 0 0.06% 0 99.94% 0% 0% 

U 0.51% 0% 0.20% 0% 99.29% 0% 

- 0.05% 0.46% 0.18% 1.24% 0% 98.07% 

 

 
managed to increase the accuracy of vowel I, which had a 

20% error when utilizing lip motion, reduced to only 0.47%, 

hinting that the vowel I challenge for detection with lip motion 

is resolved by analyzing the entirety of facial movement of the 

subject. 

The facial movement recognition model also reduced the 

challenging vowel O which had an 18% error rate to 0.06% 

error rate, almost eliminating the error of this specific vowel. 

Vowel O indicated to have a sufficient distinction that can 

be found when the entirety of the subject’s facial movement 

is analyzed, but this distinction is somewhat lost when it is 

focused on the lips of the subject. 

However, both pieces of research are consistent in regards 

to vowels A and E, where prediction becomes a challenge high 

level of inaccuracy in both when compared to other vowels. 

It was a 17% error when lip motion is utilized, and then it 

provided approximately 5.4% error utilizing this research’s 

model. The issue indicated that there is a need for an approach 

that allowed better differentiation between vowels A and E. 

An important addition that this research provided is the ca- 

pability of detecting a silent state, which allowed the detection 

of whether the speaker tried to speak a vowel or not. This 

expanded the model to not only differentiate the vowels but 

also to detect whether the subject is speaking a vowel or is 

silent. 

IV. CONCLUSION 

This research covered the implementation of vowel recogni- 

tion by utilizing the facial movements of the speaking subject. 

A similar approach utilizing lip’s motion is covered previ- 

ously in research by Maxalmina [10], providing 84% highest 

 
 

Fig. 7. Sequence of Silent Subject Misinterpreted as Speaking 

TABLE VIII 

MAXALMINA’S  LIP  MOTION  MODEL 

Layer Detail 

 

 

 

 

 

 

 

 

 

 

accuracy. This research took the approach of utilizing facial 

movement with a CNN-BiLSTM model yielding a validation 

accuracy of 98.66%. 

Accuracy improvement was also consistently followed for 

all vowels, yielding an error rate below 6%. The most notable 

improvement is noted for vowel I, O, and U with an error 

 

TABLE IX 
ERROR RATE COMPARISON BETWEEN LIP MOTION [10] AND THIS 

RESEARCH 

 

Vowel Maxalmina Lip Motion Facial Movement Recognition 

A 17% 5.47% 

E 17% 5.38% 

I 20% 0.47% 

O 18% 0.06% 

U 9% 0.71% 

Layer 

 

Kernel Output Activation 
Convo 3D (32) 3x3x3 8x54x110x32 Relu 

MaxPool 2D 1x2x2 8x27x55x32 - 

Convo 3D (64) 3x3x3 8x29x57x64 Relu 

MaxPool 2D 1x2x2 8x14x28x64 - 

Convo 3D (128) 3x3x3 8x14x28x128 Relu 

MaxPool 2D 1x2x2 8x7x14x128 - 

Dense 64 - - 

Dense 32 - - 

Dense 5 - Softmax 
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rate below 1%, while vowels A and E showed an error rate 

of around 5.4%. This result indicated a huge potential for 

facial movement recognition utilization in recognizing Bahasa 

Indonesia vowels in future research. 
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