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Abstract— The paper focuses on presented an Artificial 

Neural Network (ANN) approach to allocate power for a 

hybrid energy storage system (HESS) in an Electric Vehicle 

(EV).  Batteries are typically used to store excess energy. The 

high-energy density of batteries can cause increased stress and 

reduced lifespan when they are exposed to sudden changes in 

irradiation and load. However, by combining them with 

supercapacitors, which have a high-power density, the stress 

on the battery can be reduced and the battery's lifespan 

extended. The HESS comprises a battery and supercapacitor, 

and the ANN algorithm aims to optimize power allocation 

between these two energy storage devices. While optimization 

can often take high computational resources and time, it is 

expected that a well-trained ANN can allocate power for the 

EV HESS more quickly. In this research, the inputs to the 

ANN are the required power derived from the drive cycle, 

energy and power capacity of the battery and supercapacitor, 

and state of charge (SOC) of the battery and supercapacitor. 

The ANN testing result in case SOC battery 85% and 

supercapacitor 30%  RMSE 3088.2 watt and the time 

simulation 0.006392 seconds. Case SOC battery 75% and 

supercapacitor 65% RMSE 3689.3 watt and the time 

simulation 0.006780 seconds. Case SOC battery 45% and 

supercapacitor 50% RMSE 2985.2 watt and the time 

simulation 0.007100 seconds 

Keywords— artificial neural network, battery, hybrid energy 

storage system, power allocation, supercapacitor.  

I. INTRODUCTION 

The automotive industry undergoes a transformative 
shift towards sustainable and eco-friendly transportation 
solutions, electric vehicles (EVs) have emerged as a key 
player in reducing greenhouse gas emissions and 
dependence on fossil fuels. Batteries are commonly used in 
EVs due to their high energy density and long cycle life, 
despite having a low power density. In the high current and 
high-frequency load profiles, the service life of lithium-ion 
batteries will be significantly shortened[1].To solve this 
problem, supercapacitor with high power density is 
introduced to form a hybrid energy storage system (HESS) 
with lithium-ion batteries. HESS has better power 
performance, durability, and stability. The instantaneous 
power output of lithium-ion batteries and supercapacitors is 
affected by the power allocation strategy [2]. 

 An optimal power allocation strategy improves EV 
performance and efficiency, and prolongs battery life, 
reducing storage costs [3]. To achieve the optimal power 
allocation of HESS, various power allocation strategies 
have been proposed, such as fuzzy logic [4], frequency-
based [5], optimization-based power allocation 
strategies[6], and rule-based [7]. Power-level-based 
methods for allocating power loads to batteries and 
supercapacitors quantitatively play a crucial role based on 
their state of charge (SOC), power demand, and other 
relevant parameters [8].  

Recently, machine learning algorithms, such as ANN 
have been used to estimate power allocation. Load 
forecasting can be accurately performed using ANN, an 
artificial intelligence (AI) technique that does not require 
human expertise [9] 

Therefore, To better evaluate HESS performance, this 
paper proposes optimal power allocation for energy storage 
systems using the ANN method [10]. ANN offers several 
advantages over traditional mathematical models[11]. They 
can handle complex and nonlinear systems without the need 
for a pre-defined mathematical model[12][13] However, 
ANNs also have some challenges. One of the tasks is to 
identify the most important features, select the appropriate 
activation function, determine the optimal number of 
neurons in the hidden layer, and set the appropriate learning 
rate. Unfortunately, this process can be quite time-
consuming.  

The referenced [14] study explored power optimization 
in a battery-supercapacitor hybrid energy storage system 
integrated with a standalone PV system. The research 
utilized Mixed-Integer Linear Programming (MILP) and 
compared it with a rule-based approach to achieve efficient 
power distribution. The results demonstrated the cost-
effectiveness of MILP methods over the rule-based strategy. 
However, it was noted that MILP methods had longer 
simulation times.   

This paper proposes a battery-supercapacitor hybrid 
energy storage management system using neural network-
based methodologies to address a challenge. The system is 
simulated using MATLAB alongside electric vehicle 
setups. The aim is to accelerate output prediction compared 
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to a filtering-based method utilizing MILP optimization. 
Additionally, the simulation considers the variation in state 
of charge (SOC) from both storage components, a 
consideration not addressed in the referenced research. The 
paper is intended to improve output prediction compared to 
referenced research and accommodate SOC variation. 

This paper is split into several sections. Section II 
discusses ANN model and Section III presents the results 
and discussion of the research. Lastly, Section IV provides 
the conclusion.  

II.  MATERIALS AND METHODS 

This section explains the system configuration, outlines 

the design of the ANN, and details of the data used in the 

research.  

A. System Configuration 

 System modeling is carried out to be able to visualize 
the electric vehicle system will become research material. 
The visualization is in the form of an SLD (Single Line) 
configuration Diagram) electric vehicle hybrid storage 
system. However, the SLD is just that visual representation 
and does not consider it based on the limitations each 
component. Additionally, system modeling also includes 
the simulation process of electric vehicles without hybrid 
energy storage systems to obtain load profile power that will 
later be used for HESS optimization.The converters link the 
parts to the DC buses. This configuration uses full active 
topology. 

 

Fig. 1. Hybrid energy storage configuration system 

In this configuration, each battery and supercapacitor 
system has a control module in the form of a DC/DC 
converter so that the charging and discharging of each e can 
be regulated. Each battery and supercapacitor system is 
connected to the DC Bus which is then connected to an 
inverter that will change the DC current into AC as input 
from the motor. 

The specification of the EV selected for this research is 
shown in TABLE I. To obtain the power and energy 
requirements of the EV specified in the research, we used 
the ADVISOR program in MATLAB. In the ADVISOR, 
the inputs needed are the specification of the vehicles and 
the driving cycle, from which the power and energy graphs 
can be obtained and used as the data. The driving cycle used 
in this research is the urban dynamometer driving schedule 

(UDDS) in Fig. 2. In general, electric vehicles only use a 
battery energy storage system (BES). However, one thing 
that needs to be paid attention to, it can be seen that the 
power released by BES is very fluctuates in each unit of 
time. One of them is to prevent the power released by the 
battery from being too low fluctuates by adjusting 

supercapacitor energy storage system to meet power 
requirements that exceed limits BES maximum discharge . 

TABLE I.   ELECTRIC VEHICLE PARAMETER 

Parameter Value/Type 

Nominal Range 384 km 

Battery Type Liquid Cooled Lithium-ion 

Battery Capacity 58 kWh 

Rated Voltage 522,7 V 

Drive Layout Rear Wheel Drive (RWD) 

Drive Motor 125 kW AC Permanent Magnet 
Synchronous Motor (PMSM) 

Charging Time (10%-100%) 1 kW AC 

Weight 1830 Kg 

B. Data for ANN 

The process starts with the inputs and targets. These 
inputs and targets are processed by the ANN to predict the 
power allocation hybrid energy storage shown in Fig. 3. The 
ANN constructed for this study comprises 7 inputs and 2 
targets. 

The first input is the required power based on driving 
cycle, as explained in the previous section. The second and 
third inputs are SOC of the battery and supercapacitor. The 
fourth and fifth inputs are the energy capacity of the battery 
and supercapacitor.  This data is taken from the 
specifications of the car type. And the last input is battery 
and supercapacitor power capacity. Input parameter data 
shown in Table II  

The targets are the power allocation for the battery and 
supercapacitor, which used the data based on the mixed-
integer linear programming optimization[14], which were 
applied for the renewable energy application, and are 
applied for the EV application in this research.  Datasets 
comprising input and target variables have been 
meticulously prepared for analysis. These datasets have not 
been trained, but rather, are the direct results of MILP 
optimization procedures. Neural network testing has been 
conducted across three distinct dataset scenarios to make a 
comprehensive comparison between the target and output, 
specifically with regard to battery and supercapacitor. 

 

Fig. 2. Required Power vs Time 

 

 

Fig. 3. Conceptual Framework 



Journal on Advanced Research in Electrical Engineering, Vol. 8, No. 2, Jul. 2024 49 

 
TABLE II.  INPUT PARAMETER 

Parameter Value 

Drive Cycle (UDDS) 1360 s  

SOC Battery 22 Variations  (%) 

SOC Supercapacitor 22 Variations (%) 

Battery Energy Capacity  208800 (kWs) 

Supercapacitors Energy Capacity 2318 (kWs) 

Battery Power Capacity 75 (kW) 

Supercapacitor Power Capacity 750 (kW) 

  

The datasets are recommended to be split into a training 

set, validation set, and testing set. The data used for training, 

validation, and testing were divided in the ratio of 70%, 

15%, and 15% respectively. During the training of the 

model in MATLAB, only the training data was utilized. The 

validation data was used to monitor the progress of the 

training, while the testing data was kept aside to evaluate the 

performance of the trained model. 

C. Neural Network  Configuration 

 A feed-forward backpropagation neural network was 

used in the study. In a feedforward neural network, 

information flows from input to output layers through 

hidden layers using the Levenberg-Marquardt 

backpropagation training function (TRAINLM) in 

MATLAB R2018a. The model takes input from 7 

parameters. There is one hidden layer in the neural 

network. This layer is an intermediate layer between the 

input and output layers and plays a crucial role in capturing 

complex patterns in the data.The hidden layer contains 20 

nodes (neurons). Each node in the hidden layer processes 

the input data and contributes to the model's ability to learn 

and generalize. The tangent function (tansig) serves as the 

activation function in the hidden layer. The choice of 

activation function influences the non-linearity of the 

model and its capacity to learn complex relationships. The 

model produces predictions for 2 target parameters. These 

could represent the output or outcome variables that the 

model is designed to predict. Its shown in Fig. 4 

The training parameters used to derive the model were 

specified in Table 3, and the neural network model was 

trained until the validation test achieved the lowest possible 

MSE. This training function is known for updating weight 

and bias values more efficiently compared to other 

backpropagation training functions. The Levenberg-

Marquardt algorithm is often used for quickly converging 

to a solution in optimization problems. The activation 

function used during artificial neural network (ANN) 

training was the hyperbolic tangent function (tansig). The 

tansig function generates output values in the range of +1 

to -1. It is commonly used in hidden layers of neural 

networks for introducing non-linearity and enabling the 

network to learn complex patterns. 

 

tan 𝑠𝑖𝑔 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

 

 

TABLE III.  TRAINING PARAMETER 

Parameter Value 

Epoch  1000 

Time Infinite 

Goal 0 

Min Gradient 1x10-7 

Max fail 10000 

mu 0.001 

mu_dec 0.1 

mu_inc 10 

mu_max 1.0x1010 

 

 

 

Fig. 4. Neural Network Setup Architecture 

 The input and output data resulting from MILP 
optimization, using 20,30%,40%,50%,60%,70%,80%,90% 
battery SOC and supercapacitor SOC, were utilized as data 
for training. The primary goal of this approach is to 
improve the neural network's ability to distinguish between 
dynamic power distribution in the two storage units during 
both the charging and discharging phases. 

 Following that, the neural network goes through a 
testing phase using early state of charge (SOC) values that 
have never been used for training before. This is done to 
evaluate the effectiveness and accuracy of the neural 
network. The results are then compared with those of MILP 
(Mixed Integer Linear Programming) optimization, with the 
evaluation being conducted using mean square error (MSE) 
and root mean square error (RMSE) values. 

III. RESULTS AND DISCUSSION 

To evaluate the effectiveness of the neural network, it 

is important to compare it with the MILP optimization 

discussed in the previous section. In this section, we will 

compare the target data obtained from MILP optimization 

with the output data produced by the neural network for 

each battery-supercapacitor case. 

A. ANN Training Result 
In this session, the initial SOC for battery and 

supercapacitor is set to 50%. Fig. 5 shows the comparison 
between target and the battery output, while Fig. 6 shows 
the comparison for supercapacitor between target and the 
battery output 

In Fig. 5 the power battery are quite good, battery 
output has reached the target. Fig.6 while The result of 
supercapacitor power is that the supercapacitor output 
cannot reach the desired target  

B.  ANN Testing Result 
In these test results, datasets containing input and target 

variables have been carefully prepared, but not trained, and 
are now ready for analysis.These datasets are the direct 
results of MILP optimization procedures. Through neural 
network testing, conducted across distinct dataset 
scenarios, a comprehensive comparison between the target 

(1) 
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and output Is undertaken, specifically concerning battery 
and supercapacitor. MSE and RMSE values for the neural 
network testing results are presented in the table below. 
These metrics are used to assess the model's accuracy in 
predicting target values. MSE calculates the average 
squared difference between predicted and actual values, 
while RMSE measures this difference in the original units 
of the data, providing insight into the magnitude of 
prediction errors. 

1) Case 1 SOCbat =85%, SOCsc=30% 

In this case, testing was conducted with 85% battery 

SOC and 30% supercapacitor SOC, considering the 

maximum condition of these two components. Fig. 7 

illustrates the comparison between the target and battery 

output, while Fig. 8 depicts the comparison in the 

supercapacitor.  The power  distribution graphic shows that 

both components tested effectively based on the neural 

network model that was used. However, The test results on 

the power battery are quite good. while supercapacitor 

power is that the supercapacitor output cannot reach the 

desired target. Table IV displays the RMSE value in case 1 

with an error of 3088.2 watt and a simulation time of 

0.006392 seconds 

2) Case 2 SOCbat=75%, SOCsc=65% 

In this case, testing was conducted with 85% battery 

SOC and 30% supercapacitor SOC, considering the 

maximum condition of these two components. Fig. 9 

illustrates the comparison between the target and battery 

output, while Fig. 10 depicts the comparison in the 

supercapacitor. The power distribution graphic shows that 

both components tested effectively based on the neural 

network model that was used.  However, The test results on 

the power battery are quite good. while supercapacitor 

power is that the supercapacitor output cannot reach the 

desired target. Table IV displays the RMSE value in case 1 

with an error of 3689.3 watt and a simulation time of 

0.006780 seconds 

3) Case 3 SOCbat=45%, SOCsc50% 

In this case, testing was conducted with 85% battery 

SOC and 30% supercapacitor SOC, considering the 

maximum condition of these two components. Fig. 11 

illustrates the comparison between the target and battery 

output, while figure 12 depicts the comparison in the 

supercapacitor. The power  distribution graphic shows that 

both components tested effectively based on the neural 

network model that was used however, The test results on 

the power battery are quite good. while supercapacitor 

power is that the supercapacitor output does not meet the 

supercapacitor target. Table IV displays the RMSE value in 

case 1 with an error of 2985.2 Watt and a simulation time 

of 0.007100 seconds 

 

Fig. 5. Targets and outputs battery power sharing for ANN training 

 

Fig. 6. Targets and outputs supercapacitor power sharing for ANN 

training 

 

 

Fig. 7. Targets and outputs battery power sharing for ANN testing case 

1 

 

Fig. 8. Targets and outputs supercapacitor power sharing for ANN 

testing case 1 
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Fig. 9. Targets and outputs battery power sharing for ANN testing case 

2 

 

Fig. 10. Targets and outputs supercapacitor power sharing for ANN 

testing case 2 

 

Fig. 11. Targets and outputs battery power sharing for ANN testing case 

3 

 

Fig. 12. Targets and outputs supercapacitor power sharing for ANN 

testing case 3 

 

 

TABLE IV.  MSE-RMSE TESTING RESULT AND TIME SIMULATION 

No 

SOC 

MSE RMSE 

Time 

Simulation 

(second) 
Bat SC 

1 85% 30% 9.5370e+06 3088.2 0.006392 

2 75% 65% 1.3611E+07 3689.3 0.006780 

3 45% 50% 8.9115e+06 2985.2 0.007100 

  

As observed the previous, the ANN output cannot 

reach the target supercapacitor in a certain time. It is caused 

by a rapid transition to the discharge state, where the power 

load exceeds the power generated by the load, leading to a 

shift in the charging process. However, in the previous 

dataset, rapid changes with significant differences from 

charging to discharging rarely occur. As a result, only 

during this timeframe, the neural network needs more time 

to identify the pattern.  

IV. CONCLUSION 

This paper presents the result of ANN-based power 
allocation for battery and supercapacitor HESS in an EV. 
The ANN data training was based on a cost-optimization-
based power allocation with various ANN inputs. In the 
ANN, power can be manange and allocated in less second, 
where MILP takes 154.101634 seconds. However, 
differences exist in some intervals, particularly 
supercapacitors in various scenarios.  Despite this, the 
ANN commonly operates perfectly fine and shows 
acceptable error differences. This indicates that a well-
trained ANN is a promising alternative method to the 
optimization-based method which typically require high 
computational cost. There are several future improvement 
potentials of the presented research, such as directly using 
driving cycle as the inputs instead of required power, or 
furthermore using the starting and end location of the 
EV as the inputs 
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