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Abstract—Deep learning has been proposed as an 

automated solution for classifying the severity levels of 

Diabetic Retinopathy (DR). In this study, we utilized ResNet50 

architecture to classify DR using the APTOS2019 dataset. As 

an initial step, we initialized the model with pre-trained 

weights from ResNet50 on ImageNet and implemented 

augmentation and resampling during training. We adopted an 

ensemble approach combined with classifiers such as SVM, 

Random Forest, and Logistic Regression, resulting in a 

ResNet50-Ensemble (SVM+RF+LR), with outputs obtained 

using a Soft Voting Classifier. The model achieved an accuracy 

of 85%, with a precision of 0.72, recall of 0.71, and F1-score of 

0.71. The AUC values for the normal, mild, moderate, severe, 

and proliferative classes were 1.00, 0.96, 0.95, 0.95, and 0.91, 

respectively, with a Macro-average AUC of 0.96. These 

findings indicate that the appropriate use of ensemble methods 

can significantly enhance DR classification performance with 

suitable optimization strategies. 

Keywords—APTOS2019, AUROC, diabetic retinopathy, 

ImageNet, ResNet50 

I. INTRODUCTION 

Diabetic retinopathy (DR) is a complication that affects 
the eyes because of diabetes mellitus (DM) and is one of the 
leading causes of blindness worldwide. This condition occurs 
due to high blood glucose levels, which can cause severe 
damage to the blood vessels in the retina [1]. According to 
the International Diabetes Federation (IDF), it is estimated 
that by 2045, there will be 463 million people with DM 
symptoms worldwide, and this number is expected to 
increase to 700 million. 

The International Council of Ophthalmology (ICO) states 
that there are three stages of non-proliferative diabetic 
retinopathy (NPDR) based on severity: mild, moderate, and 
severe. In contrast, the proliferative stage presents more 
advanced symptoms, characterized by more pronounced 
signs of severe retinopathy. Therefore, early detection is 
crucial in helping prevent the progression of DR severity. 

Computer-Aided Detection (CAD) can accelerate the 
diagnostic process in a more efficient manner compared to 
manual examination, which is time-consuming [2]. The 
development of CAD-based systems for DR diagnosis can 
assist in reducing the time required by ophthalmologists to 
diagnose 

The symptoms of diabetic retinopathy (DR) can be 
detected through various lesions observed in fundus retinal 
images, such as microaneurysms, hemorrhages, soft 
exudates, and hard exudates [3]. Microaneurysms (MA) are 
an early sign of DR, appearing as small red dots with a round 

shape and a diameter of less than 125 µm. Hemorrhages 
(HM) are signs of DR characterized by red spots larger than 
125 µm in size. Soft Exudates (cotton wool) appear as white 
spots on the retina, caused by swelling of nerve fibers that 
appear oval or round. Meanwhile, Hard Exudates (EX) are 
characterized by bright yellow spots with sharp edges in the 
outer layers of the retina, resulting from fluid leakage from 
the retina. 

Various methods have been applied by researchers to 
classify the severity levels of diabetic retinopathy (DR) as an 
effort to address issues related to diabetes. Convolutional 
Neural Networks (CNNs) are commonly used in medical 
imaging [4], along with Deep Learning (DL) techniques [5] 
and Transfer Learning (TL) approaches [6]. One study 
applying these methods is by Taufiqurrahman et al. [7], who 
used the MobileNetV2 model, pre-trained on the ImageNet 
dataset. The classifier used was SVM, resulting in a hybrid 
model (MobileNetV2-SVM) with an accuracy of 85% and 
AUROC values of 1.00, 0.82, 0.94, 0.94, and 0.93 for the 
normal, mild, moderate, severe, and proliferative classes, 
respectively. Patel and Chaware [8] modified MobileNetV2 
by adding a GlobalAveragePooling2D layer. Initially, the 
model was trained with frozen layers to avoid updating 
weights. Several layers were then fine-tuned to improve 
performance, successfully increasing training accuracy from 
70% to 90% and validation accuracy from 50% to 81%. 
Another study by Mungloo-Dilmohammud et al. [9] used the 
private Blind Mauritian dataset with models VGG16, 
ResNet50, and DenseNet169 to identify the best model. The 
results showed that ResNet50 was the best model, achieving 
82% accuracy in initial trials and 79% accuracy when 
classifying the Blind Mauritian dataset. 

Based on various studies conducted, this research aims to 
classify the severity of DR using the ResNet50 model with a 
Transfer Learning (TL) approach. Furthermore, the analysis 
will be performed by utilizing ResNet50 as a feature 
extractor, replacing the classification layer with several 
different types of classifiers. 

II. METHODS 

The workflow of the proposed DR severity classification 
system is shown in Figure 1. For further clarification, the 
following is a detailed process for each stage of the 
workflow. 
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Fig. 1. Research workflow stages. 

A. Dataset 

This study uses the APTOS2019 dataset, collected from 
the Aravind Eye Hospital in India. This public dataset 
contains 3,662 fundus retinal images, acquired through 
fundus photography techniques.  The images are classified  

 

Fig. 2. Label distribution for APTOS2019 (N = 3662 images, DR severity 

labels are 0 to 4). 

 

Fig. 3. Sample images from APTOS2019, the top to bottom rows 
corresponds to the gradual DR severity of class 0 (normal DR) to 

class 4 (proliferative DR) 

into five categories representing the severity levels of 
diabetic retinopathy (DR): class 0 for normal DR, class 1 for 
mild DR, class 2 for moderate DR, class 3 for severe DR, 
and class 4 for proliferative DR. The resolution of the images 
in this dataset ranges from 474 x 358 pixels to 4288 x 2848 
pixels. 

Figure 2, shows the distribution of fundus retinal images, 
with a total of 1,805, 370, 999, 193, and 295 images for each 
class. Out of the total 3,662 fundus retinal images, the dataset 
is divided into 90% for training data and 10% for testing data 
during the training process. 

B. Image Preprocessing 

The APTOS2019 dataset contains images of varying 
sizes, with unnecessary black areas in each image that may 
interfere with the feature extraction process. However, the 
proportion of these black areas varies across images. 
Therefore, the first step was to resize each image to 224 x 
224 pixels. Next, the proportion of the black areas was 
standardized using the auto-cropping method from Graham's 
[10], as shown in Figure 4. 

 

Fig. 4. Auto cropping technique with resize image 

 

Fig. 5. Image Preprocessing 

 

Fig. 6. Original and resampled training data distribution 

To enhance the contrast in the APTOS2019 dataset, 

previous studies used in [11] [12] have shown significant 

results. Based on this, the present study will adopt a 

preprocessing technique by utilizing the green channel, 

which is processed using CLAHE, and then combining it to 

produce optimal images, as shown in Figure 5. 

C. Augmentation and Resampling 

Figure 2 shows that the data distribution in the 
APTOS2019 dataset is highly imbalanced. Therefore, this 
study applies augmentation and resampling techniques to 
balance the data distribution in the training set. 
Augmentation is performed by enlarging the images (90%), 
flipping the images (both horizontally and vertically), and 
applying random rotations to the images (0-45 degrees). 

In the 10-fold cross-validation scheme, this study will 

use two resampling approaches. The first approach balances 

the number of samples in each class by equalizing the 

counts, resulting in 700 samples per class or a total of 3,500 

training samples. The second approach involves randomly 

splitting the data in each class, yielding varying numbers of 

training samples per class, with a total of 2,994 training 
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samples, as shown in Figure 6, which displays the training 

data distribution for both the original data and the two 

resampling schemes. 

D. Training 

This study uses the ResNet50 architecture, which has 

been pre-trained on ImageNet. 

 

 

 

Fig. 7. Illustration of ResNet50 architecture 

 

Fig. 8. Workflow Ensemble Learning 

 

 

Fig. 9. Transfer Learning process  

1) ResNet50  

ResNet50 is a CNN model with 50 layers, achieving an 

error rate of 3.6% [13] and a total of 25.6 million 

parameters. This model consists of 48 convolutional layers, 

along with 1 MaxPool layer and 1 AveragePool layer. 

ResNet50 is known for its "skip connection" approach, 

which helps address the gradient vanishing problem during 

training, as shown in Figure 7. The illustration of the 

ResNet50 model architecture. 

This study will use the ResNet50 model by applying 

Transfer Learning (TL), as implemented by He et al. [13]. 

The model's pre-trained weights on the ImageNet dataset 

will be fine-tuned using the APTOS2019 dataset for 100 

epochs with a batch size of 32. The optimizer used is Adam 

with a learning rate of 0.0001, while the loss function 

employed is categorical cross-entropy to measure how well 

the model predicts the correct class in a multi-class 

classification task. 

2) ResNet50 as Feature Extractor 

In Transfer Learning (TL), the weights in the pre-trained 

convolutional layers are typically kept fixed, while the fully 

connected layers are retrained using the new dataset. This 

approach assumes that the convolutional layers, trained on a 

large-scale dataset, serve as effective feature extractors. 

Subsequently, an analysis will be conducted on the use of 

the convolutional layers of the ResNet50 model as a fixed 

feature extractor, with the classification layer replaced by 

various types of classifiers, such as Support Vector Machine 

(SVM). The TL process flow is shown in Figure 8. 

In this study, each retinal image is represented as a 

feature value derived from the extraction process at the last 

fully connected layer. The SVM classifier will use these 

feature values from the training data with default parameters 

and then evaluate its performance on the test data. To 

enhance the model's results, the researchers assess the 

model's ability to classify the severity of DR by calculating 

the Area Under the Receiver Operating Characteristic 

(AUROC) for each class. 

E. Ensemble Learning 

Ensemble Learning (EL) is a technique that combines 

multiple models to enhance predictive performance and help 

reduce the risk of overfitting. This approach has been 

applied by Mondal et al. [14], who demonstrated that model 

fusion can yield better predictive performance compared to 

a single model. The workflow for using the EL method in 

this study is shown in Figure 8. 

This approach will implement several types of 

classifiers, such as SVM, Random Forest, and Logistic 

Regression, utilizing the ResNet50 model as a feature 

extractor. The results will be obtained using the Soft Voting 

Classifier. 

F. Performance Evaluation 

To analyze the classification results in this study, a 

confusion matrix is used to measure the model's 

performance, as shown in Figure 10. 
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Fig. 10. Confusion Matrix 

True Positive (TP) occurs when the model predicts 

positive, and the outcome is indeed positive. True Negative 

(TN) occurs when the model predicts negative, and the 

outcome is truly negative. False Positive (FP) occurs when 

the model predicts positive, but the outcome is negative. 

False Negative (FN) occurs when the model predicts 

negative, but the outcome is actually positive. 

Common metrics used in multi-class classification 

include accuracy, precision, recall, and F1-score with a 

macro-average (M) approach, which the equations shown in 

Equation (1), (2), (3), and (4). The macro-average is chosen 

because the metrics are calculated independently for each 

class, and then the average is taken, ensuring that each class 

has equal weight. This metric is preferred in classification 

tasks  with  imbalanced  datasets,  as  it can highlight greater 

errors when the model performs poorly on minority classes 

(mild and severe) [15]. 

Accuracy = 
TP + TN 

(1) 
TP + TN + FP + FN 

Precision = 
TP     

(2) 
TP + FP     

Recall = TP     (3) 

TP + FN     

F1-Score = 
2 × 

Precision × recall (4) 

precision + recall 

The final metric used in this study is the ROC or 

AUROC. The ROC curve visualizes the effectiveness of the 

model across various thresholds, showing the relative trade-

off between the true positive rate (TPR) and the false 

positive rate (FPR), which the equations shown in Equation 

(5) and (6).  

TPR = 
TP     

(5) 
TP + FN     

FPR = 
TN     

(6) 
TN + FP     

AUROC indicates how well the model assigns higher 

probabilities to positive examples compared to negative 

ones. The macro-average AUROC value is used as a score 

to evaluate the model's performance. This value is applied to 

label predictions with probabilities, so in this study, the 

metric is measured only on the SVM output and not on the 

ResNet50 classification layer output. This metric has 

previously been used to display the classification 

performance of DR for existing models [16] [17]. 

III. RESULTS AND DISCUSSION 

A. Performance of ResNet50 

Table 1 presents the performance of the ResNet50 model 

on the test data using a 10-fold cross-validation scheme. The 

model achieved an average accuracy, precision, recall, and 

F1-score of 79%, 0.64, 0.65, and 0.64, respectively. The 

confusion matrix associated with the fold that demonstrated 

the best model performance (Fold 8, as shown in Table 1) is 

presented in Table 2. The results indicate that the accuracy, 

precision, recall, and F1-score for this fold reached 83%, 

0.69, 0.71, and 0.69, respectively. 

Table 2 shows that the overall performance of the 

ResNet50 model was best in classifying the normal and 

severe classes. Conversely, the model experienced 

misclassifications in the mild, moderate, and proliferative 

classes. Specifically, the mild class was often misclassified 

as moderate, the moderate class as severe, and the 

proliferative class was frequently misclassified as severe. 

These misclassifications tend to occur among classes that 

are adjacent in severity levels. 

TABLE 1. Performance of ResNet50 on 10-fold cross validation scheme 

Fold 
Metrics 

Accuracy Precision Recall F1-Score 

1 76% 0.61 0.63 0.60 

2 81% 0.66 0.66 0.66 

3 81% 0.66 0.67 0.67 

4 81% 0.65 0.62 0.63 

5 81% 0.69 0.70 0.68 

6 81% 0.68 0.68 0.66 

7 76% 0.59 0.61 0.59 

8 83% 0.69 0.71 0.69 

9 79% 0.62 0.61 0.61 

10 74% 0.57 0.58 0.57 

Average 79% 0.64 0.65 0.64 

TABLE 2. Confusion matrix of ResNet50 classification results on fold-8 

test data 
 Predicted Class 

Normal Mild Moderate Severe Proliferative 

A
c
tu

a
l 

Normal 174 5 1 0 0 

Mild 1 23 11 0 2 

Moderate 1 5 77 12 5 

Severe 0 1 2 13 3 

Proliferative 1 0 6 7 15 

B. Performance of ResNet50-SVM 

The results shown in Table 2 demonstrate improved 

performance when using classifiers compared to the 

traditional classification layer of ResNet50. By leveraging 

convolutional layers as feature extractors, each retinal image 

was subsequently trained using an SVM classifier with a 10-

fold cross-validation scheme. 

Table 3 presents the performance of the model using a 

10-fold cross-validation scheme. The results show that the 

model achieved an overall average accuracy, precision, 

recall, and F1-score of 82%, 0.67, 0.66, and 0.66, 
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respectively, which are higher than the performance metrics 

of the ResNet50 model for each metric used. The confusion 

matrix corresponding to the fold with the best model 

performance (Fold 8 in Table 3) is shown in Table 4. These 

results indicate that the accuracy, precision, recall, and F1-

score for this fold reached 84%, 0.71, 0.71, and 0.71, 

respectively.  

TABLE 3. Performance of ResNet50-SVM on 10-fold cross validation 
scheme 

Fold 
Metrics 

Accuracy Precision Recall F1-Score 

1 82% 0.66 0.66 0.66 

2 81% 0.66 0.68 0.67 

3 81% 0.66 0.68 0.66 

4 83% 0.68 0.67 0.67 

5 84% 0.71 0.70 0.70 

6 83% 0.70 0.70 0.70 

7 79% 0.61 0.61 0.61 

8 84% 0.71 0.71 0.71 

9 79% 0.60 0.59 0.59 

10 82% 0.67 0.64 0.65 

Average 82% 0.67 0.66 0.66 

 

The confusion matrix for the best-performing ResNet50-

SVM model is shown in Table 4. Compared to the confusion 

matrix for the best-performing ResNet50 model in Table 2, 

the hybrid ResNet50-SVM model demonstrated better 

performance in classifying majority classes (normal and 

moderate) compared to minority classes. However, it 

exhibited strong performance in distinguishing adjacent 

severity levels, particularly between the mild and 

proliferative classes.  

The ROC curve of the best-performing ResNet50-SVM 

model is shown in Figure 11, where the model demonstrated 

excellent performance in classifying the severity levels of 

DR. This is evident from the high AUC values across all 

classes, with a Macro-Average AUC of 0.95. The normal 

class achieved the best performance with an AUC of 1.00, 

indicating that the model is highly accurate in classifying the 

normal class. 

For the performance in other classes, the mild class 

achieved an AUC of 0.92, the moderate class an AUC of 

0.95, the severe class an AUC of 0.94, and the proliferative 

class an AUC of 0.91, indicating strong results. With all 

AUC values exceeding 0.90, the model demonstrates a 

robust ability to classify the severity levels of DR effectively. 

TABLE 4. Confusion matrix of ResNet50-SVM classification results on 
fold-8 test data 
 Predicted Class 

Normal Mild Moderate Severe Proliferative 

A
c
tu

a
l 

Normal 175 5 0 0 0 

Mild 2 24 10 0 1 

Moderate 1 6 81 7 5 

Severe 0 1 3 11 4 

Proliferative 1 0 7 5 16 

 

Fig. 11. ROC curves for each class and Macro-Average of the ResNet50-
SVM on fold-8 test data. 

C. Performance Ensemble 

The ensemble method was tested with four ensemble 

approach scenarios: ResNet50-Ensemble (SVM+RF+LR), 

ResNet50-Ensemble (SVM+RF), ResNet50-Ensemble 

(SVM+LR), and ResNet50-Ensemble (RF+LR), using a 10-

fold cross-validation scheme. By combining these models, it 

is expected to enhance the performance of the model in 

classifying the severity levels of DR. 

Table 5 shows the average results of the performance 

evaluation comparison of the ensemble method across the 

four scenarios. The results indicate that using the ensemble 

method provides better model performance in terms of 

accuracy and stability. Specifically, the ResNet50-Ensemble 

(SVM+RF+LR) and ResNet50-Ensemble (SVM+LR) 

scenarios demonstrated the best model performance in terms 

of accuracy, recall, and F1-score. However, the ResNet50-

Ensemble (SVM+RF+LR) scenario outperformed the others 

in precision. Therefore, the ensemble method in the 

ResNet50-Ensemble (SVM+RF+LR) scenario is considered 

the better approach. 

TABLE 5. Comparison of model performance with the ensemble method 
using a 10-fold cross-validation scheme. 

Classifier 
Average Performance 

Accuracy Precision Recall F1-Score 

Output ResNet50 79% 0.64 0.65 0.64 

ResNet50-SVM 82% 0.67 0.66 0.66 

ResNet50-Ensemble 
(SVM+RF+LR) 

83% 0.69 0.66 0.67 

ResNet50-Ensemble 

(SVM+RF) 
82% 0.67 0.65 0.66 

ResNet50-Ensemble 
(SVM+ LR) 

83% 0.68 0.66 0.67 

ResNet50-Ensemble 

(RF+LR) 
82% 0.68 0.65 0.66 

Table 6 shows the performance of the ResNet50-

Ensemble (SVM+RF+LR) model using a 10-fold cross-

validation scheme. The model achieved an average 

accuracy, precision, recall, and F1-score of 83%, 0.69, 0.66, 

and 0.67, respectively, which are higher than the 

performance of the ResNet50-SVM model across all 

metrics. The confusion matrix corresponding to the fold that 

demonstrated the best model performance (Fold 8 in Table 
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6) is shown in Table 7. These results indicate that the 

accuracy, precision, recall, and F1-score for this fold 

reached 85%, 0.72, 0.71, and 0.71, respectively. 

TABLE 6. Performance of Ensemble on 10-fold cross validation scheme 

Fold 
Metrics 

Accuracy Precision Recall F1-Score 

1 83% 0.66 0.65 0.65 

2 83% 0.68 0.68 0.68 

3 82% 0.67 0.68 0.67 

4 84% 0.71 0.68 0.69 

5 84% 0.73 0.69 0.70 

6 83% 0.70 0.68 0.68 

7 80% 0.64 0.63 0.63 

8 85% 0.72 0.71 0.71 

9 81% 0.63 0.60 0.61 

10 82% 0.69 0.63 0.65 

Average 83% 0.69 0.66 0.67 

The confusion matrix for the best-performing ResNet50-

Ensemble (SVM+RF+LR) model is shown in Table 7. 

Compared to the confusion matrix for the best-performing 

ResNet50-SVM model in Table 4, the ResNet50-Ensemble 

(SVM+RF+LR) model demonstrates strong overall 

performance, especially in recognizing the normal, 

moderate, and proliferative classes. However, there are 

some misclassifications, such as mild being classified as 

moderate, severe as proliferative, and proliferative as 

moderate. These misclassifications may be due to the 

similarity of features between these classes, such as mild 

with moderate, and moderate with severe and proliferative. 

The ROC curve for the best-performing ResNet50-

Ensemble (SVM+RF+LR) model is shown in Figure 12. It 

demonstrates superior performance in classifying DR 

severity levels compared to the performance of the 

ResNet50-SVM model displayed in Figure 11. This is 

indicated by the high Macro-Average AUC value of 0.96, 

which signifies that the model has excellent classification 

ability across all classes. 

The AUC values obtained for each class are as follows: 

the normal class with an AUC of 1.00, the mild class with 

an AUC of 0.96, the moderate class with an AUC of 0.95, 

the severe class with an AUC of 0.95, and the proliferative 

class with an AUC of 0.91. With all AUC values above 

0.90, these results indicate that the model has excellent 

ability in classifying DR severity levels. 

TABLE 7. Confusion matrix of Ensemble classification results on fold-8 

test data 
 Predicted Class 

Normal Mild Moderate Severe Proliferative 

A
c
tu

a
l 

Normal 175 5 0 0 0 

Mild 2 24 10 0 1 

Moderate 1 4 83 7 5 

Severe 0 0 4 9 6 

Proliferative 1 0 7 3 18 

 
Fig. 12. ROC curves for each class and Macro-Average of the Ensemble on 

fold-8 test data. 

D. Comparison with Other Results 

Several studies have successfully classified DR severity 

using Convolutional Neural Network (CNN) models 

effectively through fundus image analysis, as demonstrated 

by Zhang et al. [11], Eko et al. [18], and Liu et al. [17]. 

Additionally, there are studies that use features extracted by 

CNNs as inputs for traditional Machine Learning (ML) 

models for the final classification process. This approach 

aims to maximize the CNN's ability to detect complex visual  

patterns in fundus images by leveraging the strengths of  

models, as done by Yaqoob et al. [19] and Mohanty et al. 

[20]. These studies applied ML techniques such as Random 

Forest or XGBoost to achieve more accurate and robust 

classifications. 

CNN models are effective in classifying DR severity 

through fundus image analysis. Several studies also 

integrate features extracted by CNNs with traditional 

Machine Learning (ML) models, such as Random Forest or 

XGBoost, to improve classification accuracy. This approach 

optimizes the CNN's ability to capture complex visual 

patterns in fundus images, while leveraging the strength of 

ML models to achieve more accurate and robust 

classifications. Additionally, there are studies that apply 

ensemble models, where pre-trained models are combined, 

as demonstrated by Qummar et al. [16], that uses the 

ensemble method with a Stacking Classifier in their model 

training. 

Table 7 presents a comparison with previous studies on 

the classification of DR severity. The results show that the 

proposed ensemble model performs exceptionally well in 

terms of accuracy, precision, recall, f1-score, and AUC for 

each class, making it superior to the other models and 

optimal for classification. 
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TABLE 8. Comparison of model performance in classification of DR with 

another research 

Method Performance 

(Qummar, et al. [16]) 

Model Ensemble 

Accuracy : 80.8%, Precision : 63.85%, 
Recall : 51.5%, Specificity : 86.72%, 

F1-Score : 53.74% 

AUC Macro-Average : 0.87 
AUC Normal : 0.85, AUC Mild : 0.71, 

AUC Moderate : 0.85, AUC Severe : 

0.96, AUC Proliferative : 0.97 

(Yaqoob, et al. [19]) 
ResNet50-Random Forest 

Accuracy: 75.09% 

(Zhang, et al. [11]) 

ResNet50 
Accuracy: 83.7% 

(Eko, et al. [18]) 

EfficientNet-B7 
Accuracy: 84.36% 

(Mohanty, et al. [20]) 

Model Hybrid (VGG16-
XGBoost) 

Accuracy: 79.50% 

(Liu, et al. [17]) ResNet50 

(Transfer Learning-Fine 
Tuning) 

Accuracy: 81.97% 

AUC = 0.9531 

(Liu, et al. [17]) 

InceptionV3 (Transfer 

Learning-Fine Tuning) 

Accuracy: 83.61% 
AUC = 0.9256 

ResNet50-SVM (This 
paper) 

Accuracy: 84%, Precision; Recall; F1-

Score : 0.71 

AUC Macro-Average : 0.95 
AUC Normal : 1.00, AUC Mild : 0.92, 

AUC Moderate : 0.95, AUC Severe : 

0.94, AUC Proliferative : 0.91 

ResNet50-Ensemble 

(SVM+RF+LR) (This 

Paper) 

Accuracy: 85%, Precision : 0.72, Recall; 
F1-Score : 0.71 

AUC Macro-Average : 0.96 

AUC Normal : 1.00, AUC Mild : 0.96, 
AUC Moderate : 0.95, AUC Severe : 

0.95, AUC Proliferative : 0.91 

IV. CONCLUSION 

In this study, we propose the use of an ensemble learning 
model, the ResNet50-Ensemble (SVM+RF+LR) model, to 
classify DR severity levels. This model achieved accuracy, 
precision, recall, and F1-score of 85%, 0.72, 0.71, and 0.71, 
respectively, as well as AUC values of 1.00, 0.96, 0.95, 0.95, 
and 0.91 for the normal, mild, moderate, severe, and 
proliferative classes, with a macro-average AUC of 0.96. 
These results demonstrate that the model has a good balance 
between accuracy and AUC across all classes. This indicates 
that with the appropriate optimization strategy and proper 
parameter use, the model's performance in DR classification 
can be enhanced, providing a significant contribution to early 
detection and more accurate diagnosis.  
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