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Abstract—Dynamic economic dispatch (DED) is a crucial 

task in modern power systems, requiring efficient optimization 

to minimize generation costs while satisfying operational 

constraints. This study introduces a Hybrid Electromagnetic 

Field Optimization with Sine-Cosine Algorithm (EMFO-SCA) 

tailored to address the unique challenges of the Sulselbar 150 kV 

power system. Specifically, the algorithm is designed to handle 

non-linear cost functions, complex constraints, and dynamic 

load variations across a 24-hour scheduling period. EMFO-SCA 

achieves a balanced integration of global exploration (via 

Electromagnetic Field Optimization) and local exploitation (via 

the Sine-Cosine Algorithm), resulting in robust optimization 

performance. Applied to a system with seven active generator 

buses, EMFO-SCA demonstrates an average operational cost 

reduction of 0.27% compared to the Kho-Kho Algorithm 

(KKA). This improvement translates to measurable cost savings 

while maintaining strict adherence to generation limits, ramp 

rate constraints, and power balance at all intervals. For 

instance, during peak demand at 521.52 MW (hour 12), the 

method effectively minimizes costs without compromising 

operational reliability. The dual-phase design of EMFO-SCA 

enables faster convergence and higher accuracy than 

conventional methods, making it a scalable solution for real-

world DED challenges. By optimizing power generation 

schedules dynamically and reliably, this study establishes 

EMFO-SCA as a significant advancement in energy system 

optimization, with clear potential for practical deployment in 

similar power systems. 

Keywords—economic dispatch, electromagnetic field 

optimization, power system, python, sine-cosine algorithm 

I. INTRODUCTION 

In Sulawesi, the electricity infrastructure is divided into 

two systems: the Northern Sulawesi System and the Southern 

Sulawesi System [1]. The transmission networks, which 

include 150 kV and 275 kV lines. Among these, the Southern 

System is the larger of the two, with a generation capacity of 

1,977 MW and a peak load of 1413 MW. In comparison, the 

Northern System has a smaller scale, with a generation 

capacity of 573 MW and a peak load of 421 MW [1]. 

The Sulselbar power system in Sulawesi, Indonesia, is a 

critical element of the region’s energy infrastructure, 

delivering reliable electricity to diverse consumers, including 

industrial, commercial, and residential sector[2]. This 

interconnected system operates at a 150 kV voltage level, with 

generation units spread across geographically distinct 

locations, predominantly powered by thermal plants relying 

on fossil fuels. However, the system faces significant 

challenges, including dynamic load variations, transmission 

losses, and operational constraints such as ramp rate limits and 

generation capacities. These factors demand advanced 

optimization methods to ensure cost-efficient and reliable 

electricity distribution [3].  

Economic Dispatch (ED) [4], a cornerstone of power 

system optimization, aims to determine the optimal power 

outputs of generation units to meet load demands at the lowest 

operational cost while adhering to environmental and 

operational constraints [5]. However, as electricity systems 

increasingly face dynamic load patterns, classical ED 

methods, often referred to as Static Economic Dispatch (SED) 

[6], prove inadequate. SED fails to account for temporal 

complexities and operational constraints, necessitating the 

development of Dynamic Economic Dispatch (DED) [7], [8]. 

Unlike its static counterpart, DED incorporates the variability 

of load demand and generation units’ temporal response 

capabilities, ensuring efficient power management over time. 

Traditional optimization approaches for the Sulselbar 

system, such as the Lagrange method [9], have been utilized 

extensively but struggle with non-linear, multi-dimensional 

problem spaces. Metaheuristic techniques, such as the 

Artificial Bee Colony (ABC) algorithm [10], have shown 

promise in addressing some of these limitations by effectively 

reducing fuel costs and stabilizing power generation under 

static and dynamic conditions. Similarly, Modified Improved 

Particle Swarm Optimization (MIPSO) has demonstrated 

significant potential in enhancing convergence speed and 

improving solution quality by introducing modifications to the 

standard PSO framework, such as dynamic weight 
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adjustments and enhanced position updates [11]. These 

modifications allow MIPSO to better balance global 

exploration and local exploitation, addressing certain 

complexities in economic dispatch problems. However, even 

robust methods like ABC and MIPSO have inherent 

limitations in fully achieving this balance, particularly in 

highly complex and dynamic scenarios. This necessitates 

further advancements in optimization techniques to address 

these challenges more comprehensively and ensure scalability 

and adaptability to real-world applications. In addition, 

methods like MFOA-ABC [12], FFA-ABC [13], and PSOHIC 

[14] have been proposed for optimization tasks. Compared to 

EMFO-SCA, which combines the attraction-repulsion 

dynamics of Electromagnetic Field Optimization (EMFO) 

with the periodic behavior of the Sine-Cosine Algorithm 

(SCA) to balance exploration and exploitation, these methods 

employ different hybridization strategies. For instance, 

MFOA-ABC integrates the Multifactorial Optimization 

Algorithm (MFOA) with Artificial Bee Colony (ABC) to 

enhance search efficiency, while FFA-ABC combines Firefly 

Algorithm (FFA) with ABC for improved convergence. 

PSOHIC leverages a hybrid of Particle Swarm Optimization 

(PSO) and Harmony Inspired Crossover (HIC) for solution 

refinement. Each approach offers unique strengths, but 

EMFO-SCA stands out for its adaptability and precision in 

navigating complex search spaces. 

The Artificial Bee Colony (ABC) algorithm and Modified 

Improved Particle Swarm Optimization (MIPSO) are 

metaheuristic techniques that have demonstrated capabilities 

in reducing fuel costs and improving power generation 

stability. ABC effectively balances exploration and 

exploitation but struggles in highly complex and dynamic 

scenarios, while MIPSO enhances convergence speed and 

solution quality through dynamic weight adjustments and 

refined position updates, though it remains sensitive to 

parameter tuning. In contrast, EMFO-SCA surpasses these 

methods by integrating EMFO’s strong global exploration 

with SCA’s precise local exploitation, achieving a superior 

balance that enhances adaptability, scalability, and solution 

robustness, particularly in highly dynamic and complex 

economic dispatch problems. 

The proposed hybrid EMFO-SCA method effectively 

addresses key challenges in Dynamic Economic Dispatch 

(DED) optimization.  The goal of the dynamic economic 

dispatch (DED) program is to optimize the output of the 

generators over a period of time in an optimized economic 

manner . By enhancing exploration capabilities,  thorough 

search of the solution space and avoiding suboptimal results. 

Simultaneously, it improves local search precision, enabling 

fine-tuning of solutions to achieve optimal cost efficiency and 

adherence to constraints. This hybrid approach dynamically 

schedules power generation outputs over a 24-hour period, 

accommodating hourly variations in load demand with high 

adaptability. Additionally, the method applies stringent 

penalties for power mismatches, ensuring that load demands 

are met accurately while maintaining operational feasibility. 

Together, these features make the EMFO-SCA method a 

robust and efficient solution for addressing the complexities 

of modern power systems. 

Using real-world load data from the Sulselbar power 

system, the hybrid EMFO-SCA algorithm demonstrates its 

capability to dynamically optimize power generation 

schedules. It surpasses the performance of traditional 

methods, such as the Lagrange technique and ABC algorithm, 

achieving significant cost savings, reducing computational 

time, and improving compliance with ramp rate and 

generation limit constraints. By incorporating penalties for 

mismatches and ensuring normalized power balance at each 

step, the approach ensures both feasibility and cost-

effectiveness. 

This research significantly contributes to advancing the 
optimization methodologies for the Sulselbar power system, 
aligning with Indonesia’s broader goals of sustainable and 
efficient energy management. The study underscores the 
potential of hybrid metaheuristics in addressing the 
complexities of modern power systems, providing a scalable 
and adaptable framework for dynamic power generation 
scheduling in regions with similar challenges. 

II. PROBLEM FORMULATION 

The dynamic economic dispatch problem is formulated to 
optimize power generation schedules over a specified period, 
such as 24 hours, by minimizing operational costs while 
adhering to system constraints. The key elements of this 
formulation include the objective function, power balance, 
generation limits, and ramp rate constraints. 

1. Objective Function 

The primary goal is to minimize the total fuel cost 
associated with power generation across all units. The fuel 
cost for each generator is represented as a quadratic function 
of its power output [8]: 

𝐹(𝑃) =∑(𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖)

𝑁

𝑖=1

 (1) 

Where: 

𝑃𝑖  : Power output of the  𝑖 -th generator (MW). 

𝑎𝑖, 𝑏𝑖, 𝑐𝑖 : Fuel cost coefficients for the  𝑖 -th 
generator. 

N : Total number of generators. 

This cost function captures both the fixed and variable 
costs of generation. The objective is to minimize 𝐹(𝑃) while 
maintaining operational feasibility. 
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2. Power Balance Constraint 

To ensure system reliability, the total power generated 
must match the load demand at each time step, accounting for 
transmission losses if necessary. This is expressed as [8]: 

∑𝑃𝑖

𝑁

𝑖=1

= 𝑃𝐷 + 𝑃𝐿𝑜𝑠𝑠 (2) 

Where: 

𝑃𝐷 : Total power demand (MW). 

𝑃𝐿𝑜𝑠𝑠  : The total transmission losses in the 
network (MW). 

∑𝑃𝑖

𝑁

𝑖=1

 : Total power generated by all units (MW). 

This equality constraint ensures that the power supply 
meets the load requirement at all times, avoiding surplus or 
deficit conditions. 

3. Generation Limits Constraint 

Each generator operates within its specified capacity 
range, defined by its minimum and maximum generation 
limits. This constraint is represented as [8]: 

𝑃𝑚𝑖𝑛,𝑖 ≤ 𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥,𝑖 ∀𝑖∈ [1, 𝑁] (3) 

Where: 

𝑃𝑚𝑖𝑛,𝑖 : Minimum generation capacity of the  𝑖-th 
generator (MW). 

𝑃𝑚𝑎𝑥,𝑖 
: 

Maximum generation capacity of the  𝑖-th 
generator (MW). 

This ensures that generators do not operate beyond their 
physical or economic capabilities. 

4. Ramp Rate Constraint 

To account for the dynamic nature of generation, the rate 
at which a generator’s output can increase or decrease between 
time steps is limited by its ramp-up and ramp-down 
capabilities. This constraint is defined as [8]: 

−∆𝑃𝑑𝑜𝑤𝑛,𝑖 ≤ 𝑃𝑖
(𝑡) − 𝑃𝑖

(𝑡−1) ≤ ∆𝑃𝑢𝑝,𝑖 ∀𝑡∈ [2, 𝑇] (4) 

Where: 

∆𝑃𝑑𝑜𝑤𝑛,𝑖 : Maximum ramp-down rate for the  𝑖 -th 
generator (MW/time step). 

∆𝑃𝑢𝑝,𝑖 : Maximum ramp-up rate for the  𝑖 -th 
generator (MW/time step). 

𝑃𝑖
(𝑡) : Power output of the  𝑖 -th generator at 

time  t. 

This constraint ensures smooth transitions in generator 
output, preventing rapid changes that could destabilize the 
system or damage equipment. 

III. METHODOLOGY 

 The optimization of Dynamic Economic Dispatch (DED) 

is crucial for modern power systems, particularly in managing 

the Sulselbar power system in Sulawesi, Indonesia. This study 

introduces a hybrid metaheuristic approach that combines 

Electromagnetic Field Optimization (EMFO) and the Sine-

Cosine Algorithm (SCA) to address the non-linear, multi-

dimensional challenges of DED. Below, the methodology is 

detailed step-by-step to illustrate the design and execution of 

the hybrid EMFO-SCA optimization. 

A. Datasets 

The test data used in this study was derived from real 

generation data of the 150 kV Sulselbar power system, which 

comprises nine generator buses. However, the testing was 

conducted using only seven generator buses: Tello, Balusu, 

Tallasa, Punagaya, Pare-Pare, Sengkang, and Palopo. The 

other two buses, Sungguminasa and Bakaru, were not 

operational during the testing period. The analysis also 

incorporated the fuel cost functions and generator power 

constraints specific to the thermal power system of the 150 kV 

Sulselbar network, as detailed in Table 1 [10].  

        
Table 1. Characteristics of Thermal Power Plants 

Unit 
a 

(Rp/MW2) 

b 

(Rp/MW) 

c 

(Rp) 

Pmin 

(MW) 

Pmax 

(MW) 

Ramp Up 

(MW/h) 

Ramp Down 

(MW/h) 

1 1.3736E-12 2240.9 7.1332E-11 2 8 480 480 

2 -2.4144E-14 427.4 -1.1182E-11 9.68 38.73 180 180 

3 -3.6365E-14 1917.8 -4.5984E-11 5 8 480 480 

4 6.346E-15 432.75 1.9212E-10 55.59 222.35 180 180 

5 -2.5302E-14 1908.44 1.8497E-11 15 60 480 480 

6 -4.7539E-15 427.78 -1.0608E-10 54.88 219.5 600 600 

7 1.587E-13 2634.3 1.3227E-11 1.25 5 480 480 

In this study, the load data used to evaluate the 

effectiveness of the proposed method over a 24-hour period 

was randomized to represent typical daily load patterns 

observed in real-world power systems. This approach was 

employed to simulate varying demand conditions across peak 

and off-peak periods, enabling a robust evaluation of the 

algorithm’s adaptability and efficiency. 

While the dataset used in this study was not directly 

obtained from actual measurements, it was designed to reflect 

realistic load variations typically encountered in systems like 

Sulselbar’s 150 kV network. The randomized data ensures 

diversity in demand patterns, including gradual load increases 

during morning hours, peak demands around midday, and 
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reduced demands during nighttime, thereby capturing the 

dynamic nature of power system operations. 

 

 
Fig. 1. 24-hours power demand 

B. EMFO-SCA 

The Hybrid Electromagnetic Field Optimization with 
Sine-Cosine Algorithm (EMFO-SCA) is a metaheuristic 
optimization technique designed to address complex, multi-
dimensional, and constrained problems, such as the dynamic 
economic dispatch in power systems. This hybrid approach 
integrates the strengths of Electromagnetic Field Optimization 
(EMFO) and the Sine-Cosine Algorithm (SCA) to achieve an 
efficient balance between global exploration and local 
exploitation. 

Electromagnetic Field Optimization (EMFO) is a 

metaheuristic optimization algorithm inspired by the 

attraction and repulsion dynamics of electromagnetic fields. 

This algorithm was first introduced by H. 

Abedinpourshotorban et al. (2016) [15], utilizing 

electromagnetic forces to balance exploration and exploitation 

in the solution search space. The approach was further refined 

by S. Song et al. (2019) [16], who incorporated chaotic maps 

and fuzzy entropy to enhance EMFO’s performance in color 

image segmentation, and by S. Ahmad (2022) [17], who 

applied it to selective harmonic elimination in power systems. 

The attraction and repulsion interactions in EMFO are based 

on Coulomb’s law, with forces calculated using the equation 

𝐹 = 𝑘 ∙
𝑞1∙𝑞2

𝑟2
∙ 𝑟̂ , where 𝑘  is a constant, 𝑞1  and 𝑞2  represent 

the fitness values of solutions, 𝑟  is the distance between 

particles, and 𝑟̂ is the direction vector. This dynamic ensures 

that particles are attracted toward promising solutions (global 

optima) while avoiding suboptimal areas, enabling a broader 

search and reducing the risk of premature convergence, as 

demonstrated in [16] and [17]. 

Sine-Cosine Algorithm (SCA), on the other hand, 
leverages the natural oscillatory properties of sine and cosine 
functions to guide particles in exploring and exploiting the 
solution space. The algorithm has been comprehensively 
reviewed by A. B. Gabis et al. (2021) [18], highlighting its 
adaptability to various optimization problems, and further 
developed by J. Tang and L. Wang (2023) [19], who proposed 

a collaborative approach based on elite solutions. 
Additionally, J. C. Bansal et al. (2023) [20] elaborated on the 
mathematical foundation of SCA, demonstrating how it 
generates controlled periodic movements to refine solutions 
around promising regions. In SCA, particle positions are 
updated using the equations 𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟 ∙ sin(𝜔) or 
𝑋𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑟 ∙ cos(𝜔) , where 𝑟  determines the step 
size and 𝜔 controls the oscillatory frequency. This approach 
balances exploration of new areas and exploitation of 
promising solutions, with dynamic adaptability highlighted in 
[18] and [19]. By combining these oscillatory mechanisms, 
the algorithm ensures efficient convergence to the global 
optimum with high precision. SCA complements this by 
refining the search process through sine-cosine-based 
adjustments [20], [21], which are applied to the particle 
positions during the exploitation phase. This mechanism 
focuses on fine-tuning the solutions around promising regions 
by leveraging periodic mathematical functions, which provide 
controlled randomness and precision. SCA’s adaptability 
allows it to dynamically adjust solutions based on their 
proximity to the global best, ensuring efficient convergence. 

The Hybrid EMFO-SCA algorithm is designed to 
dynamically schedule power generation over a 24-hour period 
for dynamic economic dispatch. It aims to minimize 
generation costs while adhering to key operational constraints, 
such as ramp rate limits and generation capacities. To ensure 
the demand is accurately met, the algorithm imposes penalties 
for power mismatches, making it highly effective in balancing 
generation and load. Its capacity to handle non-linear cost 
functions and intricate constraints establishes it as a reliable 
and versatile solution for addressing modern optimization 
challenges in power systems. 

This hybrid optimization approach seamlessly integrates 
global exploration with local exploitation to tackle complex 
problems efficiently. The algorithm begins with particle 
initialization, followed by two complementary phases: the 
Electromagnetic Field Optimization (EMFO) phase, which 
emphasizes comprehensive exploration of the solution space, 
and the Sine-Cosine Algorithm (SCA) phase, which refines 
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potential solutions to achieve precise convergence. By 
combining these phases, the Hybrid EMFO-SCA method 
ensures a robust and flexible framework for finding optimal 
solutions. 

 

1. Initialization 

The process begins with the initialization of  number of 
particles  in the search space. Each particle represents a 
candidate solution and is randomly positioned within the 
generation limits: 

𝑃𝑗(0)~𝑈(𝑃𝑚𝑖𝑛,𝑖 , 𝑃𝑚𝑎𝑥,𝑖) (5) 
 

The initial global best position  𝑃𝐵𝑒𝑠𝑡   is set to a neutral state 
(zeros), and the global best score is initialized to infinity. 

2. EMFO Update (Exploration Phase) 

In the exploration phase, particles move under the 

influence of attraction-repulsion dynamics and sinusoidal 

oscillations. Each particle position  𝑃𝑗
(𝑡)

  is updated as 

follows: 

𝑃𝑗
(𝑡+1)

= 𝑃𝑗
(𝑡)

+ 𝐴 ∙ (𝑃𝐵𝑒𝑠𝑡 − 𝑃𝑗
(𝑡)) + 𝐵 ∙ 𝐶 (6) 

 

Where: 

A: Attraction force, promoting convergence towards 

promising solutions: 

𝐴 = 𝛼 ∙ 𝑒𝑥𝑝 (−
𝜎 ∙ 𝑡

𝑇𝑚𝑎𝑥
) ∙ (2𝑟1 − 1) (7) 

 

B: Repulsion force, encouraging diversity in the search: 

𝐵 = 𝛼 ∙ 𝑒𝑥𝑝 (−
𝜎 ∙ 𝑡

𝑇𝑚𝑎𝑥
) ∙ (2𝑟2 − 1) (8) 

 

C: Sinusoidal oscillation, enhancing randomness and 

preventing stagnation: 

𝐶 = 𝑒𝑥𝑝 (−
𝜎 ∙ 𝑡

𝑇𝑚𝑎𝑥
) ∙ (2𝜋𝑟1) (9) 

 

3. SCA update (Exploitation Phase) 

In the exploitation phase [22], particles refine their 

positions using the sine-cosine adjustment rule, which 

emphasizes local search near the global best: 

𝑃𝑗
(𝑡+1)

= {
𝑃𝑗
(𝑡) + 𝛽 ∙ sin(2𝜋𝑟3) ∙ (𝑃𝐵𝑒𝑠𝑡 − 𝑃𝑗

(𝑡)) ∙ 𝑟2, 𝑟1 < 0.5

𝑃𝑗
(𝑡)

+ 𝛽 ∙ cos(2𝜋𝑟3) (𝑃𝐵𝑒𝑠𝑡 − 𝑃𝑗
(𝑡)) ∙ 𝑟2, 𝑟1 ≥ 0.5

 (10) 
 

Where: 
𝛽 : Sine-Cosine scaling factor 
𝑟1, 𝑟2, 𝑟3 : Random value in [0,1] 

 

Presented below is the pseudocode for the EMFO-SCA 
algorithm, which is developed to deliver efficient and precise 
optimization results while addressing the technical limitations 
of power generation systems. By integrating the capabilities 
of Enhanced Moth Flame Optimization (EMFO) and the Sine 
Cosine Algorithm (SCA), this algorithm effectively tackles 
the Economic Dispatch problem by reducing fuel costs and 
ensuring compliance with power demand, generation 
capacity, and ramp rate constraints. 

1: Initialize parameters and data 

2: Read unit parameters {𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑃𝑚𝑖𝑛,𝑖, 𝑃𝑚𝑎𝑥,𝑖, ∆𝑃𝑢𝑝,𝑖 , 

∆𝑃𝑑𝑜𝑤𝑛,𝑖} 

3: Read power demand data {𝑃𝐷} 

4: Set Hybrid EMFO-SCA parameters {𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 

𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝛼, 𝛽, 𝜎} 

5: outputs ← ∅ 

6: ramp_violations ← ∅ 

 

7: for demand ∈ 𝑃𝐷 do 

8:     Initialize particle_positions randomly within [𝑃𝑚𝑖𝑛,𝑖, 

𝑃𝑚𝑎𝑥,𝑖] 

9:     global_best_position ← ∅ 

10:   global_best_score ← ∞ 

 

11:    repeat 

12:        for particle ∈ particle_positions do 

13:            Enforce generation limits [𝑃𝑚𝑖𝑛,𝑖, 𝑃𝑚𝑎𝑥,𝑖] 

14:            Calculate fuel cost and mismatch penalty 

15:            Update global_best_position if score improves 

16:        end for 

 

17:        for particle ∈ particle_positions do // EMFO update 

18:            Update position using EMFO equations: 

𝑃𝑗
(𝑡+1)

= 𝑃𝑗
(𝑡)

+ 𝐴 ∙ (𝑃𝐵𝑒𝑠𝑡 − 𝑃𝑗
(𝑡)) + 𝐵 ∙ 𝐶 

19:            Enforce generation limits [𝑃𝑚𝑖𝑛,𝑖, 𝑃𝑚𝑎𝑥,𝑖] 

20:        end for 

 

21:        for particle ∈ particle_positions do // SCA update 

22:            Update position using SCA equations: 

𝑃𝑗
(𝑡+1) = {

𝑃𝑗
(𝑡) + 𝛽 ∙ sin(2𝜋𝑟3) ∙ (𝑃𝐵𝑒𝑠𝑡 − 𝑃𝑗

(𝑡)
) ∙ 𝑟2, 𝑟1 < 0.5

𝑃𝑗
(𝑡) + 𝛽 ∙ cos(2𝜋𝑟3)(𝑃𝐵𝑒𝑠𝑡 − 𝑃𝑗

(𝑡)
) ∙ 𝑟2, 𝑟1 ≥ 0.5

 

23:            Enforce generation limits [𝑃𝑚𝑖𝑛,𝑖, 𝑃𝑚𝑎𝑥,𝑖] 

24:        end for 

 

25:        Normalize global_best_position to match demand 

26:        if |𝑃𝐷 − ∑ 𝑃𝐵𝑒𝑠𝑡| < 0.0001 then // Termination 

condition for power balance 

27:            break 

28:        end if 

29:    until Convergence or max_iterations 

 

30:    Calculate total power and fuel cost 

31:    Store output for demand in outputs 

32:    if previous_output exists then 

33:        Compute ramp rate violations 

34:        Append violations to ramp_violations 

35:    end if 

36: end for 

 

37: Save outputs and violations to Excel 

38: return outputs 

IV. RESULTS AND DISCUSSION 

The optimization testing scenario involves dynamic load 

optimization over a 24-hour period using the Sulselbar 150 kV 

power system dataset. The proposed method, Hybrid EMFO-

SCA, is benchmarked against a comparator algorithm, the 

KKA (Kho-Kho Algorithm), to evaluate its effectiveness. 

This comparative analysis aims to assess the performance of 

the optimization techniques in terms of minimizing generation 
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costs, adhering to operational constraints such as ramp rates 

and generation limits, and ensuring accurate load balancing. 

By applying realistic load data from the Sulselbar 150 kV 

system, this study provides a comprehensive evaluation of the 

methodologies in a practical context, highlighting the 

strengths and weaknesses of each approach in addressing the 

challenges of dynamic economic dispatch. 

The implementation of EMFO-SCA for the Dynamic 

Economic Dispatch (DED) problem was tailored to align with 

the specific characteristics of the Sulselbar 150 kV system. 

Adjustments included incorporating Sulselbar’s generator 

parameters, such as cost functions, generation limits, and ramp 

rate constraints, to ensure accurate modeling of operational 

behavior. The 24-hour load profile was designed to simulate 

typical demand patterns in Sulselbar, including peak and off-

peak periods. Key algorithm parameters, such as the 

attraction-repulsion forces in the EMFO phase and sine-cosine 

scaling factors in the SCA phase, were fine-tuned to optimize 

performance for Sulselbar-specific conditions. 

The algorithm emphasized strict adherence to operational 

constraints, such as power balance, ramp rates, and generation 

limits, ensuring practical and feasible solutions. While these 

adjustments were based on generalized load profiles, future 

enhancements will incorporate real-world Sulselbar data to 

further improve accuracy and applicability. These tailored 

implementations highlight the relevance and effectiveness of 

EMFO-SCA in addressing the DED challenges specific to 

Sulselbar’s network. 

Table 2 presents the scheduling details for each generator 

across all hours of the 24-hour period. The results indicate that 

the generation limits for all units have been adhered to 

throughout the scheduling process, ensuring that no violations 

occurred. This demonstrates the effectiveness of the 

optimization method in maintaining operational feasibility 

while meeting the dynamic load requirements. 

 
Table 2. EMFO-SCA’s Scheduling 

Time Demand 
Power Generated by Unit-i (MW) 

Run Time (s) 
1 2 3 4 5 6 7 

00.00 181.5439 4.392955 25.61519 6.035240 64.69397 18.54628 60.44110 1.819130 0.001618 
01.00 209.069 2.490025 25.05817 6.041138 72.75305 35.85042 65.30625 1.569927 0.001503 

02.00 160.0999 4.422348 12.20728 5.000000 59.72122 15.24484 61.91818 1.586115 0.045805 

03.00 186.4085 5.925943 16.16410 5.930043 80.75238 19.11571 56.35514 2.165195 0.004503 
04.00 192.9472 4.861556 26.72637 6.322347 60.59422 20.52073 68.92194 5.000000 0.004421 

05.00 147.2849 2.679443 11.17109 5.147685 55.61266 16.61142 54.88000 1.295781 0.088429 

06.00 303.2549 6.716982 38.10799 7.855788 71.60349 31.58655 142.7771 4.607040 0.000912 
07.00 248.4289 3.261861 25.49845 7.620106 93.57927 34.45501 79.64583 4.368409 0.000899 

08.00 235.197 4.254816 18.53946 7.639776 56.00831 20.13945 123.6152 5.000000 0.002653 

09.00 346.0775 4.073603 38.17110 5.049118 137.7293 22.66553 136.5341 1.854773 0.000905 
10.00 348.1784 7.595427 21.38117 7.261662 196.8526 38.54608 73.16069 3.380770 0.000914 

11.00 521.5178 7.087102 18.90458 7.932186 213.3069 52.98169 218.9400 2.365336 0.000897 

12.00 416.1817 3.298991 14.37251 5.186468 166.2373 25.98317 199.4374 1.665774 0.00092 
13.00 372.9123 6.290236 34.53292 5.525458 155.2424 34.56605 131.7833 4.971871 0.000911 

14.00 495.5563 2.105513 28.02969 7.732779 203.5828 56.83939 194.5894 2.676742 0.000907 

15.00 444.5215 5.452056 33.06777 6.003347 215.6743 59.31857 122.0049 3.000468 0.000892 
16.00 378.007 6.214540 25.79269 7.729737 207.9952 50.07035 78.59948 1.605017 0.000911 

17.00 456.0265 4.800869 30.18902 7.494073 185.0703 38.34128 188.2856 1.845400 0.000913 

18.00 273.1682 5.583877 33.08319 7.010995 59.04435 19.52409 145.1550 3.766643 0.000937 
19.00 382.9319 6.911094 17.45810 6.430431 134.8907 16.06922 198.6163 2.555970 0.000982 

20.00 301.319 2.604629 32.36035 7.151877 133.8691 26.75970 93.78161 4.791670 0.000921 

21.00 351.9701 5.720538 38.07112 5.648320 205.7339 21.59463 72.16349 3.038120 0.000911 
22.00 307.9594 4.312440 24.22118 6.611432 123.0270 23.05266 124.2800 2.454721 0.000914 

23.00 186.8964 3.188615 14.45840 5.000000 84.15503 22.19548 56.02142 1.877515 0.002683 

Average 4.76022746 25.1325788 6.47333358 126.572073 30.0240958 114.467226 2.88593279 0.00692754 

In addition to ensuring that the generation limits were not 

violated, the scheduling also adhered strictly to the ramp rate 

constraints for all generators. Throughout the 24-hour period, 

no ramp rate violations were observed, as detailed in Table 3. 

This highlights the robustness of the optimization approach in 

managing both static and dynamic operational constraints, 

ensuring smooth transitions in power output while meeting 

load demands efficiently. 

The EMFO-SCA program effectively handles dynamic 

and fluctuating load conditions through a series of adaptive 

mechanisms. It optimizes power distribution iteratively for 

each load, enabling the algorithm to adjust the power output 

of each generating unit individually without disrupting prior 

optimizations. The global best position is updated 

dynamically based on fuel cost evaluation and mismatch 

penalties, ensuring that the solution aligns with changing load 

demands. After each iteration, the total power output is 

normalized to meet the required load while adhering to 

generation constraints, maintaining a balance between global 

exploration and local exploitation. To address rapid load 
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changes, ramp rate constraints are enforced, preventing 

violations and ensuring smooth power transitions between 

intervals. The hybrid nature of EMFO and SCA enhances the 

algorithm’s robustness, with EMFO offering strong global 

exploration for significant load fluctuations and SCA 

providing precise local adjustments for minor variations. 

Additionally, the algorithm uses a maximum iteration limit 

and a convergence criterion based on power mismatch, halting 

computations early when the generated power closely matches 

the required demand (error < 0.0001 MW). These strategies 

enable EMFO-SCA to effectively manage dynamic load  

fluctuations, minimize operational costs, and fulfill power 

requirements while adhering to technical constraints. 

 

 

 

 

 
Table 3. EMFO-SCA’s Ramp Rate 

From To 
Ramp Rate (MW) 

1 2 3 4 5 6 7 

00.00 01.00 -1.90293 -0.55702 0.005898 8.059074 17.30414 4.865147 -0.2492 
01.00 02.00 1.932322 -12.8509 -1.04114 -13.0318 -20.6056 -3.38807 0.016188 

02.00 03.00 1.503595 3.956821 0.930043 21.03115 3.870871 -5.56303 0.579079 

03.00 04.00 -1.06439 10.56227 0.392304 -20.1582 1.405019 12.5668 2.834805 
04.00 05.00 -2.18211 -15.5553 -1.17466 -4.98156 -3.90932 -14.0419 -3.70422 

05.00 06.00 4.037539 26.9369 2.708103 15.99083 14.97513 87.8971 3.311259 

06.00 07.00 -3.45512 -12.6095 -0.23568 21.97578 2.868464 -63.1313 -0.23863 

07.00 08.00 0.992955 -6.95899 0.01967 -37.571 -14.3156 43.96933 0.631591 

08.00 09.00 -0.18121 19.63164 -2.59066 81.72097 2.52608 12.91892 -3.14523 

09.00 10.00 3.521824 -16.7899 2.212544 59.12332 15.88056 -63.3734 1.525997 
10.00 11.00 -0.50832 -2.47659 0.670525 16.45429 14.43561 145.7793 -1.01543 

11.00 12.00 -3.78811 -4.53206 -2.74572 -47.0696 -26.9985 -19.5026 -0.69956 

12.00 13.00 2.991245 20.16041 0.338991 -10.995 8.582879 -67.6541 3.306098 
13.00 14.00 -4.18472 -6.50324 2.207321 48.34044 22.27335 62.806 -2.29513 

14.00 15.00 3.346542 5.038086 -1.72943 12.09153 2.479178 -72.5844 0.323726 

15.00 16.00 0.762485 -7.27508 1.72639 -7.67918 -9.24823 -43.4054 -1.39545 
16.00 17.00 -1.41367 4.396327 -0.23566 -22.9249 -11.7291 109.6861 0.240382 

17.00 18.00 0.783007 2.894168 -0.48308 -126.026 -18.8172 -43.1306 1.921244 

18.00 19.00 1.327217 -15.6251 -0.58056 75.84637 -3.45487 53.46131 -1.21067 
19.00 20.00 -4.30646 14.90225 0.721446 -1.02157 10.69047 -104.835 2.2357 

20.00 21.00 3.115909 5.710773 -1.50356 71.86471 -5.16507 -21.6181 -1.75355 

21.00 22.00 -1.40810 -13.8499 0.963113 -82.7069 1.458031 52.11651 -0.5834 
22.00 23.00 -1.12382 -9.76277 -1.61143 -38.8719 -0.85718 -68.2586 -0.57721 

23.00 00.00 -1.90293 -0.55702 0.005898 8.059074 17.30414 4.865147 -0.2492 

Ramp Rate 480 180 480 180 480 600 480 

*(-) represents a decrease in the generator’s power output between two consecutive time steps (ramp down). 
 

   

Table 4 presents a comparison between the Hybrid 

EMFO-SCA method and the Kho-Kho Algorithm (KKA), 

focusing on the reduction of operational costs over a 24-hour 

period. The results demonstrate that the EMFO-SCA method 

effectively reduces daily operational costs, achieving an 

average cost reduction of 0.27% compared to KKA. 

Furthermore, the EMFO-SCA method maintains an 

exceptionally accurate power balance, ensuring that the total 

power generated matches the demand precisely, without 

surplus or deficit. This underscores the efficiency and 

reliability of the proposed hybrid method in optimizing power 

generation while minimizing costs, offering a clear advantage 

over the comparator algorithm in both accuracy and practical 

applications. 

The analysis of operational costs reveals that the EMFO-

SCA method consistently outperforms the KKA method in 

terms of cost efficiency, particularly when applied to the 

Sulselbar 150 kV power system. Over a 24-hour period, the 

total operational cost using EMFO-SCA is Rp 4,859,180.93, 

compared to Rp 4,872,095.04 for KKA. This represents an 

average hourly cost reduction of approximately Rp 538.09 per 

hour, translating to a 0.27% reduction in daily operational 

costs. For a critical system like Sulselbar, which supports 

diverse consumer demands including industrial, commercial, 

and residential sectors, this efficiency improvement directly 

reduces operational expenses and enhances the system’s 

reliability. When extended to a yearly calculation, assuming 

similar demand patterns and operational consistency across 

Sulselbar’s 150 kV system, the daily savings of Rp 12,914.11 

accumulate to an annual savings of approximately Rp 

4,712,649.15. Given Sulselbar’s strategic importance as a 

backbone for electricity distribution in South Sulawesi and 

surrounding regions, these savings represent a significant 

economic advantage. They underscore the practicality of 

EMFO-SCA in optimizing power generation scheduling, 

reducing costs, and ensuring operational feasibility. This 

highlights the method’s scalability and value in managing 

dynamic power demands while maintaining the stability and 

efficiency of Sulselbar’s 150 kV system. 
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Table 4. Performance Comparison 

Time Demand 

EMFO-SCA KKA 

Operational Cost 

(Rp) 

Computation Time 

(s) 

Operational Cost 

(Rp) 

Computation Time 

(s) 

00.00 181.5439 126,404.89  0.001618 151,642.75  0.001091 

01.00 209.069 159,850.08  0.001503 140,635.85  0.009438 

02.00 160.0999 110,320.32  0.045805 111,020.86  0.016314 

03.00 186.4085 132,798.78  0.004503 167,906.52  0.000472 

04.00 192.9472 142,481.77  0.004421 135,820.85  0.000464 

05.00 147.2849 103,309.43  0.088429 106,770.01  0.011210 

06.00 303.2549 210,886.22  0.000912 199,683.88  0.001212 

07.00 248.4289 184,651.72  0.000899 182,211.27  0.000425 

08.00 235.197 160,834.06  0.002653 190,202.66  0.000419 

09.00 346.0775 201,276.79  0.000905 203,040.15  0.000433 

10.00 348.1784 239,038.81  0.000914 198,982.30  0.000418 

11.00 521.5178 332,483.75  0.000897 309,694.01  0.003922 

12.00 416.1817 234,712.15  0.000920 260,342.60  0.000420 

13.00 372.9123 242,071.93  0.000911 218,768.28  0.000414 

14.00 495.5563 318,395.87  0.000907 305,636.89  0.000418 

15.00 444.5215 304,498.30  0.000892 249,559.82  0.000402 

16.00 378.007 263,191.59  0.000911 230,476.76  0.000402 

17.00 456.0265 276,700.54  0.000913 267,398.47  0.000421 

18.00 273.1682 174,927.24  0.000937 200,498.09  0.000416 

19.00 382.9319 216,019.34  0.000982 246,932.88  0.000458 

20.00 301.319 195,125.14  0.000921 198,661.32  0.000411 

21.00 351.9701 209,039.90  0.000911 229,103.72  0.000402 

22.00 307.9594 189,560.79  0.000914 202,850.79  0.000411 

23.00 186.8964 130,601.50  0.002683 164,254.30  0.000404 

Total 4,859,180.93 0.166261 4,872,095.04 0.050798 

Average 202,465.87  0.013301 203,003.96  0.002117 

The Hybrid EMFO-SCA (Electromagnetic Field 
Optimization with Sine-Cosine Algorithm) demonstrates 
significant advantages over the Kho-Kho Algorithm (KKA) in 
addressing dynamic economic dispatch optimization 
problems. These advantages stem from its superior design, 
which balances global exploration and local exploitation 
while efficiently handling operational constraints. 

The EMFO-SCA method excels in maintaining a robust 
exploration-exploitation balance through its dual-phase 
mechanism. The EMFO phase employs attraction-repulsion 
dynamics inspired by electromagnetic fields to explore the 
solution space thoroughly and avoid premature convergence 
to local optima. The SCA phase complements this by refining 
solutions using sine-cosine adjustments, enabling precise 
convergence toward the global best solution. In contrast, KKA 
relies on tagging-inspired movements for exploration and 
exploitation, which, while effective in general, lacks the 
precision and adaptability needed to handle highly 
constrained, multi-dimensional problems. 

One of EMFO-SCA’s key strengths lies in its ability to 
manage constraints effectively. By integrating constraint 
handling directly into its update equations, the method ensures 
that generation limits and ramp rate constraints are 
consistently met. Additionally, its normalization step 
guarantees an exact match between generated power and 
demand, minimizing power mismatches. On the other hand, 
KKA, which uses penalty-based approaches for constraint 
handling, is less adaptive and more prone to violations, 
particularly under dynamic conditions. 

EMFO-SCA also outperforms KKA in convergence 
speed. The dynamic adjustment of forces in the EMFO phase 
accelerates global search, while the SCA phase expedites local 
refinement, reducing the number of iterations needed to 
achieve optimal solutions. In contrast, KKA’s more stochastic 
exploration phase often requires additional iterations, 
increasing computational time and limiting its efficiency in 
real-time applications. 

Moreover, EMFO-SCA is particularly robust in tackling 
the complexities of non-linear, constrained optimization 
problems. Its hybrid design is well-suited for navigating non-
convex cost landscapes and adapting to operational 
constraints. Conversely, KKA’s simpler movement and 
refinement mechanisms make it more prone to getting trapped 
in local optima and struggling with the intricacies of non-
linear cost functions. The practical results further underscore 
EMFO-SCA’s superiority, with the method achieving 
consistent operational cost reductions over 24-hour periods. 
Its ability to achieve an average cost reduction of 0.27% 
compared to KKA highlights its effectiveness in minimizing 
expenses while maintaining reliable power scheduling. 

V. CONCLUSION 

The Hybrid Electromagnetic Field Optimization with 
Sine-Cosine Algorithm (EMFO-SCA) represents a significant 
advancement in solving the dynamic economic dispatch 
problem, especially for the Sulselbar 150 kV power system. 
This study validates its capability to achieve superior 
performance by minimizing operational costs, maintaining 
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strict compliance with operational constraints, and ensuring 
robust power balance over a 24-hour period. 

The EMFO-SCA method achieved an average operational 
cost reduction of 0.27% compared to the Kho-Kho Algorithm 
(KKA), translating into measurable financial savings across 
the entire scheduling horizon. For instance, during the peak 
demand at hour 12 (521.52 MW), the method dynamically 
allocated generation resources to minimize fuel costs while 
maintaining precise power balance. Since the power balance 
was exact, with no surplus or deficit, the system operated 
without any losses. Additionally, the method ensured strict 
adherence to generation limits and ramp rate constraints, 
highlighting its efficiency and reliability in optimizing power 
generation under dynamic conditions. Similar efficiency was 
observed at off-peak periods, such as hour 3 (160.10 MW), 
demonstrating the algorithm’s adaptability across varying 
load conditions. When projected over a year, assuming 
consistent demand patterns across Sulselbar’s 150 kV system, 
the daily savings of Rp 12,914.11 translate into annual savings 
of approximately Rp 4,712,649.15. As the backbone for 
electricity distribution in South Sulawesi and surrounding 
regions, these savings represent a significant economic 
advantage for the Sulselbar system. The results highlight the 
practicality and scalability of EMFO-SCA in optimizing 
power generation schedules, reducing costs, and ensuring 
operational feasibility while maintaining the stability and 
efficiency of Sulselbar’s 150 kV system in meeting dynamic 
power demands. From a computational perspective, the 
EMFO-SCA method demonstrated higher efficiency, 
requiring fewer iterations to achieve optimal results while 
maintaining computational feasibility. This makes it well-
suited for real-time applications in modern power systems. 

The algorithm ensures that no generation limits were 
exceeded, as the power output for each generator consistently 
stayed within the permissible range. Furthermore, the ramp 
rate constraints, critical for system stability, were strictly 
adhered to, with zero violations recorded over all scheduling 
intervals. The dynamic normalization of the global best 
solution at each iteration allowed EMFO-SCA to meet 
demand accurately, ensuring an exact match between power 
supply and load without surplus or deficit. 

The dual-phase design of EMFO-SCA—combining the 
exploration capabilities of Electromagnetic Field 
Optimization (EMFO) with the refinement precision of the 
Sine-Cosine Algorithm (SCA)—contributed to faster 
convergence and more accurate solutions. The EMFO phase 
explored the solution space effectively by simulating 
attraction-repulsion dynamics, avoiding local optima. The 
SCA phase refined these solutions through sine-cosine 
adjustments, enabling precise optimization. In comparison, 
the KKA’s simpler exploration-exploitation mechanism 
resulted in slower convergence and less optimal solutions. 

In summary, the findings confirm that the Hybrid EMFO-
SCA method is not only robust and reliable but also capable 
of delivering substantial operational cost savings and 
enhanced performance in dynamic economic dispatch 
scenarios. Its adaptability to varying load demands, strict 
adherence to constraints, and superior cost minimization 
highlight its potential as a scalable and practical solution for 
optimizing power generation in real-world energy systems. By 
outperforming traditional methods such as KKA, EMFO-SCA 
establishes itself as a powerful tool for addressing the 

complexities of modern power systems, paving the way for 
more efficient and reliable energy management. 
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