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Abstract -- Research on microstrip antennas is currently 

growing in prevalence, as their compact design and low cost 

make them simple to adapt to various needs. The goal of this 

study is to find out how the inset-fed depth affects the impedance 

matching of a rectangular microstrip antenna using a simple 

Rectangular Microstrip Antena (RMSA) design. The main 

problem encountered is the duration of the simulation with CST 

which is quite time consuming and the optimization process is 

still manual, especially for various antenna parameters. To 

overcome this, the author offers a solution by implementing a 

Neural Network (NN). The author designs the antenna to 

operate at a frequency of 2.4 GHz with an FR-4 epoxy substrate 

and simulates it using CST Suite Studio 2019 software. The 

research shows that adding an inset fed with a depth of 5 mm 

results in an impedance value of 49.81 + j3.20 Ω, which is close 

to the desired impedance. The data from CST are used for NN 

dataset, the computation process using Neural Network reduces 

simulation time by 65% faster compared to CST simulation. 

Keywords— Rectangular Microstrip antenna, Inset-fed, CST 

Suite Studio, Matching Impedance, Neural Network 

I. INTRODUCTION 

An antenna is a crucial component that facilitates 

wireless signal transmission. The requirements for antennas 

in wireless devices include a relatively small size and low 

production costs. The one commonly used form of microstrip 

antenna in wireless communication systems is the rectangular 

one. Microstrip antennas can come in various shapes and 

dimensions, even when operating at the same frequency [1]. 

This antenna mounts a thin, conductive, rectangular patch on 

a ground plane and separates it by a dielectric substrate. The 

advantages of this antenna include its low profile, simple 

design, and ease of fabrication using modern printed-circuit 

technology. However, the main disadvantages of this type of 

microstrip antenna are low efficiency, poor polarization, and 

very narrow bandwidth frequency [2,3,5]. 

Impedance mismatches can happen in microstrip patch 

antennas because of bad fed positioning, mistakes in 

fabrication, choosing the wrong substrate, effects from the 

environment, and resonance that isn't working as well as it 

should. To address these issues, careful design and 

fabrication are required, along with accurate calculations of 

the frequency and appropriate material selection. 

The primary goal of using an inset-fed is to precisely 

control the input impedance at the fed point. By changing the 

depth of the inset, it will impact on the impedance value that 

works with the transmission line. This also lowers the 

Voltage Standing Wave Ratio (VSWR) and keeps the amount 

of power that is reflected to a minimum. At the edge of the 

patch, the input impedance of the microstrip antenna is at its 

maximum value, which is often much greater than 50 Ω. This 

is because at the edge of the patch, the electric field is 

strongest, resulting in high impedance. On the other hand, at 

the center of the patch, the input impedance reaches its 

minimum value, which is usually close to zero ohms because 

this position is at the node of the electric field. Thus, the inset 

depth shifts the fed position from the edge (high impedance) 

to the center (low impedance), allowing us to match the 

antenna impedance with the 50 Ω to achieve optimal 

impedance matching. This results in better impedance 

matching, reduced reflection loss, and improved antenna 

efficiency. Properly designed inset-fed antennas can also 

offer broader bandwidth and enhanced performance in 

wireless communication applications.  

Over the past few decades, a lot of research has been 

done on neural network engineering, which has applications 

in a wide range of disciplines, including energy science, 

psychology, economics, control engineering, automation, 

aerospace, and health. Developing autonomously learning 

and evolving computers is the aim of the machine learning 

field. Using neural networks in a variety of applications 

across numerous fields, including telecommunications, is 

extremely appealing because to its high level of accuracy and 

processing speed.  

II. METHODS

The design method has been implemented to maintain 

minimal return loss at the frequency of 2.4 GHz. The design 

technique and parameter calculation formulas for the 

proposed rectangular inset-fed microstrip patch antenna are 

derived from [1] and subsequently optimized using CST Suite 

Studio 2019. The dielectric constant of the substrate is not an 

independent parameter, as it depends on the dielectric 

material used. 

A wearable thin substrate with a dielectric constant of 4.3 

and a height of 1.6 mm has been utilized for the proposed 

antenna. Multiple parameters are required for the desired 

design; hence, the dielectric constant and substrate thickness 

are established as constant values to ensure optimal 

impedance matching the inset fed patch antenna.  

After estimating the parameters of the antenna, the 

structure is modeled and simulated using CST Suite Studio. 
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The Figure 1 presents the design of the proposed antenna 

configuration. Changes in the inset width result in variations 

in the frequency, whereas alterations in the inset length affect 

the return loss [4]. The inset fed thickness must exceed 50% 

of the fed line thickness [6]. 

The fed position along the rectangular patch influences 

the input impedance of a microstrip antenna. The impedance 

at the edges of the patch reaches its maximum value, often 

exceeding 100 Ω, due to the concentration of the electric 

field. In contrast, near the center of the patch, the impedance 

approaches zero, as this region corresponds to the node in the 

electric field.  Characteristic Impedance equation is shown 

below [1]. 

𝑍𝑐 =  
120𝜋

√𝜖𝑟𝑒𝑓𝑓[
𝑊0

ℎ
+1.393+0.667ln (

𝑊0

ℎ
+1.444)]

,
𝑊0

ℎ
 >  1   (1) 

 

W0 represents the patch width, h is the thickness of the 

substrate and 𝜖𝑟𝑒𝑓𝑓  is the effective permittivity of the 

dielectric substrate.  

 

 
Figure 1. Design RMSA with Inset-fed 

Certain parameters have been tuned in CST Suite Studio 

to achieve the desired frequency, and the final optimized 

parameters are presented in Table 1. 

Table 1. Parameter RMSA 

Parameter Value 

Patch Dimensions: 

Width of the patch (Wp) 

Length of the patch (Lp) 

 

38.39 mm 

28.44 mm 

Ground plane dimensions: 

Width of the Ground plane (Wg) 

Length of the ground plane (Lg) 

 

47.99 mm 

39.74 mm 

Fed line dimensions: 

Width of the 50Ω microstrip line 

(W0) 

 

3.14 mm 

Inset fed dimensions:  

Width of the Inset  

Length of the inset (y0) 

Characteristic impedance of the 

microstrip line (Zc) 

1.57 mm 

5 mm 

50Ω 

 

This study employs a Neural Network to forecast the 

actual impedance value utilizing a dataset derived from CST 

application simulations, with the primary variable being the 

feedline size (Wf). The dataset is created with Wf variables 

ranging from 0.1 to 15 mm, allocated 80% for the training set 

and 20% for the test set[7]. The Neural Network model 

employs a regression methodology, utilizing inset feed depth 

and operating frequency as inputs, while producing the real 

impedance value as the output. The model architecture 

comprises two hidden layers containing 64 and 32 neurons, 

respectively. The training procedure employed the Mean 

Squared Error (MSE) as the loss function and utilized the 

Adam Optimizer for optimization, with a learning rate 

ranging from 0.01 to 0.1. Subsequent to the training 

procedure, the model undergoes evaluation using the test set 

to assess its predictive performance on novel data, informed 

by the generated loss value. 

III. RESULTS AND DISCUSSION 

This section discusses the CST simulation's results, 

including return loss, impedance, and neural network 

prediction results. 

A. Return Loss 

The Figure 2 illustrates the simulation's return loss of the 

antenna at a frequency point of 2.4324 GHz, with an inset fed 

depth of 5 mm. The return loss value stands at -28,261 dB, 

while the good standard return loss is smaller than -10 dB. A 

lower return loss (larger negative value) signifies that the 

antenna effectively absorbs most of the sent power, with only 

a small portion reflecting back. 

 
Figure 2. Return Loss of single microstrip antenna 

B. Impedance  

At a frequency of 2.4324 GHz, the antenna impedance is 

approximately 49.81 + j3.20 Ω Ω, as illustrated in Figure 3. 

The real component of the impedance measures 50.28 Ω, 

which is in close proximity to the standard characteristic 

impedance value of 50 Ω. This suggests that the antenna 

exhibits effective impedance matching, with a minimal and 
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negligible inductive reaction present. This enhances the 

efficiency of signal transmission at the specified frequency. 

 
Figure 3. Impedance View of single microstrip antenna 

C. Dataset Split Ratio 

The optimal results are achieved with an 80% training and 

20% testing split, resulting in a training loss of 4.9076 and a 

test loss of 4.0092, as illustrated in Table 2. This signifies that 

the model effectively identifies patterns while maintaining its 

generalization capability. As the proportion of the training 

dataset increases, the test loss typically decreases to a specific 

threshold; however, if the training component becomes 

excessively large (e.g., 90% training, 10% testing), 

performance during re-testing declines due to an insufficient 

number of samples for evaluation. 

 
Table 2 Data train/test split ratio 

Training Set Test Set Training Loss Test Loss 

10 90 3.9614 200.049 

20 80 5.1538 14.0574 

30 70 3.3659 16.9827 

40 60 5.1166 14.3651 

50 50 17.4356 22.8164 

60 40 3.2685 19.3632 

70 30 3.3212 23.5121 

80 20 4.9076 4.0092 

90 10 7.424 11.9243 

 

D. Neural Network Performance 

This research used a neural network to predict impedance 

from given frequency and inset fed depth. The training 

outcomes showed that a learning rate of 0.1 with 5000 epochs 

yielded the lowest mean squared error (MSE) value. Table 3 

presents a comparison of learning rate values with respect to 

MSE, demonstrating a substantial drop in MSE, which 

signifies excellent model learning. Figure 4 shows a graph 

that compares the predicted results to the test data from a 

depth of 0 to 14 mm and a learning rate of 0.1. The graph 

shows that the predicted results and the original data are very 

closely related. 

 
(a) 

 
(b) 

 

 
(c) 

Figure 4. Inset Depth vs. Impedance  

(a)Learning rate:0,01 (b)Learning rate:0,05 (c)Learning rate:0,1 

Table 3 Learning Rate and Losses of Neural Network 

Learning Rate Epoch MSE 

(Loss) 

0.01 5000 42.8198 

0.05 5000 33.8205 

0.1 5000 4.0092 

 

Higher learning rates result in faster training of the model; 

however, they may lead to sub-optimal solutions [8]. Lower 

learning rates require an extended duration for model 

training; however, they can lead to improved optimal 

solutions. The author adjusted the learning rate from a lower 

value to a higher value and determined that the optimal 

learning rate for the dataset is 0.1. 

 

E. Computational Performance Comparison  

Table 3 presents a comparative analysis of the simulation 

results obtained from CST and the predictions generated by 

the Neural Network, both evaluated at identical frequency 

and inset fed depth parameters. The CST results produced a 

Z0 value of 50.279 Ω, whereas the Neural Network prediction 

resulted in a Z0 value of 50.0812 Ω. The error deviation 

between the CST results and the NN results is quantified as 

0.1978, representing a percentage difference of 0.39%. The 
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low deviation value signifies that the neural network 

prediction results closely align with the simulation results.  

Table 4 Result Comparison CST & Neural Network 

Parameter Result at 5mm inset-fed 

Simulation Neural Network 

Frequency 

(GHz) 

2,432 2,432 

Z0 (Ω) 50,279 50,0812 

 

Table 4 presents a comparative analysis of the 

computational performance achieved through the utilization 

of CST versus Neural Network. The computation time for the 

simulation conducted with CST was 32 seconds. The 

computation time for the Neural Network (NN) under cold 

start conditions is 11.19 seconds. In contrast, when the NN is 

retrained, or in a hot start scenario, the computation time 

reduces to 6.49 seconds. During computation with the pre-

trained model, the time required is 0.0020 seconds. The 

implementation of Neural Networks has the potential to 

decrease computation time by a range of 65% (cold start) to 

99.99% (trained model). 

Table 5. CST vs. NN Performance Comparison 

Device: 

Notebook i5-1135G7 2.4GHz 8GB RAM 

Software 
Duration 

(second) 

CST Simulation 32  

Calculate + Training NN cold start  11,19 

Calculate + Training NN hot start 6,49 

Calculate with NN Trained model 0.0020 

 

IV. CONCLUSION 

This research concludes that the antenna design, optimized 
through CST calculations, successfully produced an antenna 
with a working frequency of 2.4 GHz and an impedance of 50 
ohms. There was an error rate of 0.39% when using a neural 
network to get an inset-fed value that met the working 
frequency and impedance requirements. Using a pre-trained 
neural network model cut the computation time by 99.99%. 
Computational using Neural networks can cut quite a lot of 
time compared to carrying out simulations manually using 

CST, but CST is still needed as a medium for collecting 
datasets.  

This computational process is quite simple because it only 
has 2 inputs and 1 output so the number of layers used is also 
adjusted to needs. In the future, it can be developed using more 
layers and databases to produce more accurate predictions, 
especially for antennas that have more complex parameters. 
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