Cooperative Position-based Formation-pursuit of Moving Targets by Multi-UAVs with Collision Avoidance

Siti Nurjanah
Department of Electrical Engineering
Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia
sitinurjanah180495@gmail.com

Trihastuti Agustinah
Department of Electrical Engineering
Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia
trihastuti@ee.its.ac.id

Muhammad Fuad
Faculty of Electrical Engineering
Universitas Trunojoyo Madura
Bangkalan, Indonesia
fuad@trunojoyo.ac.id

Abstract—The process for capturing a moving target from searcher UAVs that move from their initial position until they encircle the target successfully while maintaining safety has to be supported by an integrated target capture strategy. This paper proposes an integrated target capture strategy that consists of dynamic task allocation, formation-pursuit using position-based strategy, and optimized artificial potential field (APF). A dynamic task allocation algorithm is used in 3D dynamic environments to allocate the target to several existing UAVs efficiently. Target information is disseminated to neighbor UAVs by the temporary leader of UAVs. For the formation-pursuit using a position-based strategy, destination points to create formation are made at the sphere coordinates around a moving target. The destination points are tracked using a fuzzy state feedback controller. An optimized APF algorithm is used to avoid collisions with targets, other UAVs, and static obstacles. Each UAV can choose the optimal trajectory to avoid obstacles and reset the formation after passing them. The simulation results show that multi-UAVs successfully surrounded and formed formation-pursuit of a moving target without colliding with the closest Euclidean distance between UAVs of 1.32957 m, UAVs with a target is 1.94359 m, and UAVs with static obstacles within a range of 1.60632 m.

Keywords—formation-pursuit, multi-UAVs, obstacle avoidance, task allocation, tracking control.

I. INTRODUCTION

In recent years, quadcopter UAV has attracted considerable attention due to the large-scale applications that can be applied to both the military and civilian fields. The interest in this quadcopter UAV is due to its maneuverability, low cost, and ability to perform complex tasks in complex environments. Research on multi-UAV collaboration has been extensively developed to overcome the limitations of developing complex work environments, multiple tasks, and the performance of single UAVs. The implementation of multi-UAVs collaboration includes formation [1–3], flocking [4], target detection and tracking [5–7], task allocation [8–10], patrol and surveillance [11], [12], target encirclement [3], [13], [14] and collision avoidance [15], [16].

The research mentioned in the first paragraph shows that many researchers only focus on one problem, such as target tracking, task allocation, target encirclement, and collision avoidance. It is rare for researchers to combine several problems into one interconnected system. For example, research [10] examined a set of robots that disperse to find moving targets, where each target must be surrounded by more than two robots while considering security aspects. Multiple problems have been merged in this research. However, it was still applied to mobile robot systems. Based on the idea, this research aims to integrate multiple problems into an interrelated target capture strategy applied to multi-UAV by ensuring UAVs to avoid other UAVs and buildings.

A target capture strategy is designed for task allocation, forming a formation-pursuit, and conducting collision avoidance. The task allocation algorithm of UAVs is adopted from [10], which was previously used for a mobile robot. Furthermore, each UAV is assigned to surround the target by creating a formation-pursuit based on a position-based strategy. This strategy is based on generating points around the spherical coordinates of a moving target. These points become the reference positions for the UAVs. A fuzzy state feedback controller is utilized for tracking these desired positions, and the optimized APF from [15] is applied for safety purposes to ensure no collisions between UAVs, targets, and obstacles during capture.

This paper investigates fuzzy state feedback controls designed to track a moving target. This controller id designed for the quadcopter able to track a moving target. A scenario is created where multiple UAVs and a moving target are set in a dynamic 3D environment. The speed and position of the target are available when it enters the UAV’s detection range. This information can also be obtained from neighboring UAVs.

The main contribution to this paper is to combine several different problems. The allocation of several UAVs to a moving target, formation-pursuit at sphere coordinate formed after tracking the desired position and generating a collision-free path during the target capture are three problems investigated in this research. In addition, this paper proposed fuzzy state feedback to track the target and optimal APF to guide UAVs to avoid obstacles.

The rest of this paper is organized as follows. Section II describes methods, including the quadcopter model, tracking control, dynamic task allocation, formation-pursuit scenario, and collision avoidance algorithm. Section III explains simulation results, and Section IV concludes this paper.

© 2022 by the authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. How to cite: Nurjanah, S., Agustinah, T., & Fuad, M. (2022). Cooperative Position-based Formation-pursuit of Moving Targets by Multi-UAVs with Collision Avoidance. JAREE (Journal on Advanced Research in Electrical Engineering), 6(2).
II. MATERIAL AND METHODS

A. Quadcopter Dynamics

This section presents a quadcopter dynamics model like those previously presented in [17]. Quanser Qdrone is the type of quadcopter used in this study (see Fig. 1).

Fig. 1. Quanser Qdrone [18]

![Quadcopter configuration](image)

Fig. 2. Quadcopter configuration

The quadcopter dynamics model is derived by introducing two frames involved, the earth and body frame (see Fig. 2). Refers to the translational motion model is derived from the earth frame (E-frame). It is related to the position $[X \ Y \ Z]^T$ and velocity $[\dot{X} \ \dot{Y} \ \dot{Z}]^T$ of the quadcopter in the earth frame. The rotational motion is derived from the body frame (B-frame) since it is related to the quadcopter movement itself. A rotational motion’s roll (ϕ), pitch (θ) and yaw (ψ) angles in the body frame with the angular velocity equal to $[\dot{\phi} \ \dot{\theta} \ \dot{\psi}]^T$.

Based on the previous studies, the quadcopter dynamics model can be written as follows:

$$\dot{X} = (\sin \psi \sin \phi + \cos \psi \sin \theta \cos \phi) \frac{U_1}{m}$$ \hspace{1cm} (1)

$$\dot{Y} = (-\cos \psi \sin \phi + \sin \psi \sin \theta \cos \phi) \frac{U_1}{m}$$ \hspace{1cm} (2)

$$\dot{Z} = -g + (\cos \theta \cos \phi) \frac{U_1}{m}$$ \hspace{1cm} (3)

$$\dot{p} = \frac{j_{yx}-j_{xz}}{j_{xx}} pq + \frac{u_{y2}}{j_{yy}}$$ \hspace{1cm} (4)

$$\dot{q} = \frac{j_{zx}-j_{xz}}{j_{xx}} pr + \frac{u_{y3}}{j_{yy}}$$ \hspace{1cm} (5)

$$\dot{r} = \frac{j_{xx}-j_{yy}}{j_{zz}} pq + \frac{u_{y4}}{j_{zz}}$$ \hspace{1cm} (6)

where $[p \ q \ r]^T = [\dot{\phi} \ \dot{\theta} \ \dot{\psi}]^T$ describes the angular velocities of a quadcopter, and $U_i (i = 1,2,3,4)$ represents the input controls. The parameter of Quanser Qdrone can be seen in Table I.

B. Proposed Tracking Control

A fuzzy state feedback controller is used for controlling the quadcopter’s movements from the UAV’s current position to the intended target point, then herding the besieged target towards the confinement area in a 3D environment. The state feedback controller manages the altitude (Z) and heading (ψ). A combination of state feedback controller and Sugeno-type fuzzy logic controller manages position XY and attitude $\phi\theta$. In this quadcopter tracking control, there is an inner loop for attitude control and an outer loop for position control.

1) Position Control

The fuzzy controller is used to control the 2D positions $[X \ Y]^T$. Those outputs of fuzzy controller are reference inputs for attitude control of ϕ and θ. In this study, the fuzzy controller had two inputs: distance and velocity from the quadcopter to the target. The output is the angle of the quadcopter.

Input

- Distance: The difference between the position (X and Y) of the quadcopter and the target. Membership of distance can be seen in Error! Reference source not found.
- Velocity: The difference between the velocity (\dot{X} and \dot{Y}) of the quadcopter and the target. Membership of velocity is indicated in Fig. 4.

Output

As seen in Error! Reference source not found., the desired output $(s_{r_{ref}}$ and $s_{v_{ref}}$) becomes the input for the attitude controller (ϕ and θ), where the output value is $-0.5 < ref < 0.5$. It is assumed that the maximum slope UAV is 30°.

Rule Base

- If distance is far, then ref is 0.5
- If distance is middle and velocity is fast, then ref is 0.3
- If distance is close and velocity is fast, then ref is −0.5
- If distance is close and velocity is slow, then ref is 0

The altitude control (Z) using state feedback control, (3) modified by adding drag force to the state equation so that it becomes:

$$\dot{Z} = -g + (\cos \theta \cos \phi) \frac{U_1}{m} - d \ Z$$ \hspace{1cm} (7)

where

TABLE I. PARAMETER OF QUANsER QDRONE [17]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>m</td>
<td>1</td>
</tr>
<tr>
<td>Gravity (m/s²)</td>
<td>g</td>
<td>9.81</td>
</tr>
<tr>
<td>Inertia moment of the X-axis (kg.m²)</td>
<td>I_{xx}</td>
<td>0.03</td>
</tr>
<tr>
<td>Inertia moment of the Y-axis (kg.m²)</td>
<td>I_{yy}</td>
<td>0.03</td>
</tr>
<tr>
<td>Inertia moment of the Z-axis (kg.m²)</td>
<td>I_{zz}</td>
<td>0.04</td>
</tr>
<tr>
<td>Distance between rotor and center of mass (m)</td>
<td>l</td>
<td>0.2</td>
</tr>
<tr>
<td>Drag force (N)</td>
<td>d</td>
<td>3.13x10⁻⁷</td>
</tr>
</tbody>
</table>
\[U_1 = \frac{m}{\cos \theta \cos \phi} (g + K_1 (Z_{ref} - Z) + L_1 (\ddot{Z}_{ref} - \ddot{Z}) + \dot{Z}_{ref} + d \dot{Z}) \]

(8)

So, if (8) is substituted to (7), then the \(\ddot{Z} \) state equation becomes:

\[\ddot{Z} = K_1 (Z_{ref} - Z) + L_1 (\ddot{Z}_{ref} - \ddot{Z}) + \ddot{Z}_{ref} \]

(9)

Fig. 3. Distance fuzzy input

The simplification (9) will simplify the control process because it only needs to find the \(K_1 \) and \(L_1 \) parameters that produce the best output.

2) Attitude Control

The quadcopter heading (\(\psi \)) is controlled using a state feedback control so that the value of \(\psi \to 0 \), with:

\[U_4 = \frac{I_{xx}}{d} (-K_4 \psi - L_4 \dot{\psi}) \]

(10)

Next, (10) is substituted into (6) so that it becomes:

\[\dot{r} = \frac{I_{xx} - I_{yy}}{I_{xx}} pq - K_4 \psi - L_4 \dot{\psi} \]

(11)

Since it is known from Table I, that the value of \(I_{xx} = I_{yy} \), then (11) can be simplified to:

\[\dot{r} = -K_4 \psi - L_4 \dot{\psi} \]

(12)

Because of heading (\(\psi \)) was controlled by regulatory state feedback control, the value of \(\psi \to 0 \), so that (1) can be simplified to:

\[\ddot{X} = (\sin(0) \sin \phi + \cos(0) \sin \theta \cos \phi) \frac{U_1}{m} \]

where \(\sin(0) = 0, \cos(0) = 1 \), so

\[\ddot{X} = (s_7) \frac{U_1}{m} \]

(13)

where

\[s_7 = \sin \theta \cos \phi \]

From Error! Reference source not found., \(s_7 \) is a variable controlled by using a state feedback controller to obtain a roll value (\(\phi \)). The derivative of \(s_7 \) is assumed to be equal to \(p \), thus becoming:

\[\dot{s}_7 \approx p \]

\[\ddot{s}_7 \approx \ddot{p} = \frac{J_{yy} - J_{xx}}{J_{xx}} pq + \frac{U_2}{J_{xx}} \]

(14)

Subsequently, \(U_2 \) on Error! Reference source not found. is modified to:

\[U_2 = \frac{I_{xx}}{I_{yy}} \left(K_3 s_{7_{\text{ref}}} - K_3 s_7 - L_3 \ddot{s}_{7_{\text{ref}}} - L_3 \ddot{s}_7 + \dddot{s}_{7_{\text{ref}}} \right) \]

(15)

So, if (15) is substituted to Error! Reference source not found., then it becomes:

\[\ddot{s}_7 \approx \ddot{p} = \frac{J_{yy} - J_{xx}}{J_{xx}} pq + K_3 s_{7_{\text{ref}}} - K_3 s_7 - L_3 \ddot{s}_{7_{\text{ref}}} - L_3 \ddot{s}_7 - \dddot{s}_{7_{\text{ref}}} \]

(16)

Fig. 4. Velocity fuzzy input

From Table I, it can be seen that the values of \(J_{yy} \) and \(J_{xx} \) have a very slight difference, so it can be considered zero. Then (16) can be simplified to:

\[\ddot{s}_7 \approx \ddot{p} = K_3 s_{7_{\text{ref}}} - K_3 s_7 - L_3 \ddot{s}_{7_{\text{ref}}} - L_3 \ddot{s}_7 + \dddot{s}_{7_{\text{ref}}} \]

(17)

Similar to the previous step on position control \(X \), (2) can be simplified to:

\[\ddot{Y} = (- \cos(0) \sin \phi + \sin(0) \sin \theta \cos \phi) \frac{U_1}{m} \]

\[\sin(0) = 0, \cos(0) = 1 \]

\[\ddot{Y} = -s_8 \frac{U_1}{m} \]

(18)

where

\[s_8 = \sin \phi \]

From (18), \(s_8 \) is a variable controlled by using state feedback controller to obtain a pitch value (\(\theta \)), where the derivative of \(s_8 \) is assumed to be equal to \(q \), thus becoming:

\[\dot{s}_8 \approx q \]

\[\ddot{s}_8 \approx \ddot{q} = \frac{J_{xx} - J_{yy}}{J_{yy}} pq + \frac{U_3}{J_{yy}} \]

(19)

Next, \(U_3 \) on (19) is modified to:

\[U_3 = \frac{I_{yy}}{I_{xx}} \left(K_3 s_{8_{\text{ref}}} - K_3 s_8 - L_3 \ddot{s}_{8_{\text{ref}}} - L_3 \ddot{s}_8 + \dddot{s}_{8_{\text{ref}}} \right) \]

(20)
\[F \left(p_{i, UAV}^T - p_T \right) = k_1 \left| p_{i, UAV}^T - p_T \right| + k_2 \text{ and } G \left(D_i, w \right) = \frac{k_3 \pi d_{i1}^2 + k_4 w + k_5 (d_{i2} - w)}{2} \]

\[\left| p_{i, UAV}^T - p_T \right| = \sqrt{(a)^2 + (b)^2 + (c)^2} \]

where Euclidean distance between UAV and target is represented by \(p_{i, UAV}^T - p_T \). The detection radius of UAV is symbolized by \(d_{i3} \). A maximum speed of a UAV is denoted by \(d_{i2} \). A maximum speed of a target is expressed as \(w \), and weighting constants are stated as \(k_1, k_2, k_3, k_4, k_5 \).

Stage 4: Select three neighboring UAVs. The neighboring UAV calculates the cost value by using (23). Based on this value, three UAVs with a minimum cost value will go towards the target.

Stage 5: Form a target formation-pursuit. When a neighboring UAV with a minimum cost value toward the target, the four UAVs around the target form a formation-pursuit of moving target and herd the target to coordinates \([0, 0, 0]\). Multi-UAVs also consider collision avoidance capabilities during this process.

The dynamic task allocation algorithm for one UAV is described in Algorithm-1. It should be noted that every UAV on a distributed system is equally important, so the algorithm is also the same.

D. Position-based Formation-pursuit Strategy

There are \(n \) UAVs that perform formation-pursuit. Each UAV tracks the desired position that is around a moving target. The current UAV position and the desired position of the \(i \)-th UAV is represented by \(p_i = [X_i, Y_i, Z_i]^T \) and \(p_{ref} = [X_{ref}, Y_{ref}, Z_{ref}]^T \). The desired position can be seen in Fig. 6, where the target position \(T \) becomes the center of the formation-pursuit. In a formation-pursuit scenario, there must be points \((p_{ref}) \) to go around the target \(T \) being pursued.

The destination position consisting of four points is what will form a moving target formation-pursuit. To produce the desired position for each selected UAV to encircle the target can be searched using

\[X_{ref} = X_T + \rho^* \sin k \cos m \]
\[Y_{ref} = Y_T + \rho^* \sin k \sin m \]
\[Z_{ref} = Z_T + \rho^* \cos k \]

where \([X_T, Y_T, Z_T]^T\) represents the target position, \(\rho^* \) indicates the encirclement radius, the angle between the UAV adjacent to the target on the horizontal line is \(m \), and the angle on the vertical line is \(k \).

The result \([X_{ref}, Y_{ref}, Z_{ref}]^T\) of calculation with (23) can be an input for the tracking control in subsection B. The purpose of the formation-pursuit scenario based on this position is to reach \(p_i \rightarrow p_{ref} \), for \(i = 1, 2, \ldots, n \).
E. Collision Avoidance

Collision avoidance is an essential ability of multi-UAV systems in a dynamic environment. In capturing a moving target, optimized APF is applied to avoid static obstacles (set of cylindrical buildings) and dynamic obstacles (other UAVs).

Optimized APF as global and local path planning is applied when UAV moves to capture the target and forms formation-pursuit.

\[
F_{\text{rep}}(X) = -\nabla U_{\text{rep}}(X) =
\begin{cases}
F_{\text{rep1}}(X) + F_{\text{rep2}}(X), & \rho(X, X_o) \leq \rho_0 \\
0, & \rho(X, X_o) > \rho_0
\end{cases}
\]

where

\[
F_{\text{rep1}}(X) = k_{\text{rep}} \left(\frac{1}{\rho(X, X_o)} - \frac{1}{\rho_0} \right) \cdot \nabla^2 \frac{1}{\rho(X, X_o)} \cdot (X - X_o)
\]

\[
F_{\text{rep2}}(X) = -\frac{1}{2} k_{\text{rep}} \left(\frac{1}{\rho(X, X_o)} - \frac{1}{\rho_0} \right)^2 \cdot (X - X_o)^n
\]

The repulsive potential field produced by other UAVs that are considered dynamic obstacles are:

\[
U_{\text{UAV}(i)}(X) = \sum_{j=1}^{m} \left(\frac{1}{\rho(X, X_j)} - \frac{1}{\rho_0} \right) \cdot \nabla^2 \frac{1}{\rho(X, X_j)} \cdot (X - X_j)
\]

where \(\rho(X, X_j) \) is Euclidean distance between \(i \)-th UAV and \(j \)-th UAV.

Then determined the equation attractive potential field [20]:

\[
U_{\text{att}}(X) = \frac{1}{2} k_{\text{att}} (X - X_o)^2
\]

where \(k_{\text{att}} \) represents attractive potential field constant, \(X \) and \(X_o \) describe UAV and target position in the potential field. Attractive force \(F_{\text{att}}(X) \) is a negative gradient of \(U_{\text{att}}(X) \):

\[
F_{\text{att}}(X) = -\nabla U_{\text{att}}(X) = k_{\text{att}} (X - X_o)
\]

where the attractive force direction is along the line between the UAV and the target.

A local minimum problem that often occurs in APF is solved by modifying this algorithm through multiplying the original potential field repulsive function with the distance factor \((X - X_o)^n\) [15]. So that the repulsive potential field function is modified to:

\[
U_{\text{rep}}(X) =
\begin{cases}
\frac{1}{2} k_{\text{rep}} \left(\frac{1}{\rho(X, X_o)} - \frac{1}{\rho_0} \right)^2 (X - X_o)^n, & \rho(X, X_o) \leq \rho_0 \\
0, & \rho(X, X_o) > \rho_0
\end{cases}
\]

where \(k_{\text{rep}} \) represents repulsive potential field constant, \(\rho(X, X_o) \) describes Euclidean distance between UAV and obstacle, \(\rho_0 \) indicates influence range of obstacles, the relative distance between UAV and target is \((X - X_t)^n = [(x - x_t)^n + (y - y_t)^n] \) and \(n \) represents a positive constant greater than zero. Repulsive force \(F_{\text{rep}}(X) \) is the negative gradient of the \(U_{\text{rep}} \):
Fig. 7. Moving target tracking. (a) Trajectory tracking. (b) Position tracking error

III. RESULTS AND DISCUSSION

The following tests were conducted to verify the performance of the proposed method.

A. Experiment of Tracking a Moving Target

The tracking controller was tested on a moving target by providing information such as a point of destination that can change at any time to the quadcopter. The tests were conducted to examine whether the proposed control method can be used to track a moving target. Inputs are given in the form of target positions \((X_T, Y_T, Z_T)\), but the values of \((X_T, Y_T, Z_T)\) are obtained from a function that causes the target position to change over time. The initial position value of the quadcopter was \([0, 0, 10]\) m. The trajectory of the moving target can be described using the equation below.

\[
\begin{align*}
 v_x &= \frac{1}{2} \cos \left(t \frac{T_s}{10} \right) \\
 v_y &= \frac{1}{2} \sin \left(t \frac{T_s}{10} \right) \\
 v_z &= 2 + \frac{1}{10} \\
 t &= i \cdot T_s
\end{align*}
\]

\[
\begin{align*}
 X_t &= X + k_x \cdot v_x \\
 Y_t &= Y + k_y \cdot v_y \\
 Z_t &= Z + k_z \cdot v_z
\end{align*}
\]

The following parameters were used:

- \(m_{UAV}\) : UAV mass (kg)
- \(m_T\) : Target mass (kg)
- \(\rho^*\) : Formation-pursuit radius (m)
- \(d_{i2}\) : Detecting radius (m)
- \(d_{i2}\) : Maximum velocity of UAV (m/s)
- \(v_i\) : Maximum velocity of target (m/s)
- \(k_{att}\) : Attractive gain coefficient
- \(k_{rep}\) : Repulsive gain coefficient
- \(\rho_0\) : Influence radius of the obstacle
- \(n\) : Positive constant

According to Fig. 7. (a), the proposed control method can follow a moving target in a 3D environment well. Moreover, in Fig. 7. (b), the controller can achieve a steady-state error close to zero for tracking positions.

B. Experiment of Target Capturing

Target capture scenario testing was conducted to test whether the proposed combination of task allocation, formation-pursuit, and collision avoidance is feasible and effective. The parameters used to test the entire target capture process can be seen in Table III.

TABLE III. PARAMETER OF TARGET CAPTURE SIMULATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{UAV})</td>
<td>UAV mass (kg)</td>
<td>1</td>
</tr>
<tr>
<td>(m_T)</td>
<td>Target mass (kg)</td>
<td>1.2</td>
</tr>
<tr>
<td>(\rho^*)</td>
<td>Formation-pursuit radius (m)</td>
<td>3</td>
</tr>
<tr>
<td>(d_{i2})</td>
<td>Detecting radius (m)</td>
<td>3</td>
</tr>
<tr>
<td>(d_{i2})</td>
<td>Maximum velocity of UAV (m/s)</td>
<td>0–18</td>
</tr>
<tr>
<td>(v_i)</td>
<td>Maximum velocity of target (m/s)</td>
<td>0–16</td>
</tr>
<tr>
<td>(k_{att})</td>
<td>Attractive gain coefficient</td>
<td>1</td>
</tr>
<tr>
<td>(k_{rep})</td>
<td>Repulsive gain coefficient</td>
<td>30</td>
</tr>
<tr>
<td>(\rho_0)</td>
<td>Influence radius of the obstacle</td>
<td>1.2</td>
</tr>
<tr>
<td>(n)</td>
<td>Positive constant > 0</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE IV. INITIAL POSITION OF SEARCHER UAVs, TARGET, AND OBSTACLES

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>Z (m)</th>
<th>Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAV 1</td>
<td>73.31</td>
<td>144.65</td>
<td>78.39</td>
<td>-</td>
</tr>
<tr>
<td>UAV 2</td>
<td>155.60</td>
<td>181.24</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>UAV 3</td>
<td>0.14</td>
<td>106.04</td>
<td>37.38</td>
<td>-</td>
</tr>
<tr>
<td>UAV 4</td>
<td>39.12</td>
<td>183.61</td>
<td>81.83</td>
<td>-</td>
</tr>
<tr>
<td>UAV 5</td>
<td>69.14</td>
<td>155.68</td>
<td>59.72</td>
<td>-</td>
</tr>
<tr>
<td>UAV 6</td>
<td>94.98</td>
<td>144.27</td>
<td>25.54</td>
<td>-</td>
</tr>
<tr>
<td>UAV 7</td>
<td>11.85</td>
<td>162.94</td>
<td>68.06</td>
<td>-</td>
</tr>
<tr>
<td>UAV 8</td>
<td>68.59</td>
<td>94.64</td>
<td>67.79</td>
<td>-</td>
</tr>
<tr>
<td>Target 1</td>
<td>29.31</td>
<td>144.83</td>
<td>9.94</td>
<td>-</td>
</tr>
<tr>
<td>Target 2</td>
<td>191.43</td>
<td>147.49</td>
<td>33.53</td>
<td>-</td>
</tr>
<tr>
<td>Obstacle 1</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Obstacle 2</td>
<td>100</td>
<td>50</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Obstacle 3</td>
<td>140</td>
<td>140</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>Obstacle 4</td>
<td>50</td>
<td>100</td>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>

The tracking controller was tested on a moving target by providing information such as a point of destination that can change at any time to the quadcopter. The tests were conducted to examine whether the proposed control method can be used to track a moving target. Inputs are given in the form of target positions \((X_T, Y_T, Z_T)\), but the values of \((X_T, Y_T, Z_T)\) are obtained from a function that causes the target position to change over time. The initial position value of the quadcopter was \([0, 0, 10]\) m. The trajectory of the moving target can be described using the equation below.
Fig. 8. Simulation of dynamic task allocation algorithm. (a) Initial position. (b-c) Target capture process. (d) Forming formation-pursuit of a target.

Testing the combination of task allocation, formation-pursuit, and collision avoidance in this experiment shows the combination method's performance if a target capture scenario consists of two UAVs as targets and eight searcher UAVs that move randomly and fly in a dynamic 3D environment. The initial position of the searcher UAVs, targets, and obstacles can be seen in Table IV.

As shown in Fig. 8. (a), the target and searcher UAVs moved with a random initial position. In Fig. 8. (b-c), searcher UAVs are patrolled to find targets within their detection radius. The UAV searcher who found a target became the temporary leader, as displayed in Fig. 8. (b). The target 1 and target 2 were marked with purple and blue, respectively. Then the leader will spread the target information to other UAV searchers while calculating his cost value against the target using (23). Next, the leader moved 3 meters above the target for do a formation-pursuit with radius ρ^*. The neighboring UAV that received target information will calculate the cost value against the target, then three neighboring UAVs with a minimum cost value will be assigned to join the leader to form a formation-pursuit target. As shown in Fig. 8. (c), the searcher UAVs assigned to encircle the first target are UAVs 3, 4, 5, and 7, with a total cost value of 913.55, which is the minimum value of the total cost for the first target. As for the second target, four UAVs surrounded the target were UAVs 1, 2, 6, and 8, with a total cost of 1,218.1. Fig. 8. (d) shows that all searcher UAVs were successfully allocated to each target according to the minimum cost value, where four searcher UAVs must surround one target in formation-pursuit.

From the security side, this experiment was carried out to ensure that during the process of searching, capturing, encircling, and escorting the target to the endpoint $[0,0,5]$. There was no collision between the searcher UAV and the target, cylindrical building, and other searcher UAVs. Based on Fig. 9, the smallest distance between the searcher UAV and the target is 1.94359 m at 115.85 seconds. After that, the distance between the searcher UAV and the target reaches an equilibrium point of 2.99 m at 123.82 seconds, which is very close to the given input value of the formation-pursuit radius (ρ^*).

Fig. 10 shows the entire distance between searcher UAVs moving in a 3D environment. The value that shows the smallest distance between searcher UAVs is 1.32957 m at 114.85 seconds which occurs between UAVs 6 and 7. The distance between searcher UAVs and the four cylindrical buildings is shown in Fig. 11, where the smallest distance is 1.60632 m. The entire target capture process was successfully carried out without collisions with targets, cylindrical buildings, and other search UAVs as shown in Fig. 9 - Fig. 11.
Fig. 10. Distance between searcher UAVs

Fig. 11. Distance between searcher UAVs and obstacles

IV. CONCLUSION

This paper proposes an integrated moving target capture strategy for multi-UAVs by combining dynamic task allocation algorithm, fuzzy state feedback-based target tracking of formation-pursuit, and optimized APF-based collision avoidance.

The simulation results show that the smallest distance between UAVs of 1.32957 m, the closest distance between UAVs and target is 1.94359 m, and 1.60632 m for the shortest distance between UAV and obstacle. These values describe that the proposed cooperative control strategy can avoid collision with other UAVs, targets, and static obstacles during the target capture process. Last but not least, the proposed control strategy can allocate multi-UAVs to several moving targets.

Further research is needed to combine different platforms, such as an unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV), to study the allocation of more complex tasks in the process of capturing a moving target in the air and on the ground.

REFERENCES

