Cooperative Position-based Formation-pursuit of Moving Targets by Multi-UAVs with Collision Avoidance

Siti Nurjanah, Trihastuti Agustinah, Muhammad Fuad

Abstract


The paper focuses on the issue of capturing a moving target for multiple unmanned aerial vehicles (UAVs). The problem involves a group of UAVs to create a formation-pursuit in the encirclement of a moving target. Dynamic task allocation algorithm is used in 3D dynamic environments to efficiently allocate the target to several existing UAVs. Target information is disseminated to neighbor UAVs by the temporary leader of UAVs. For the formation-pursuit using a position-based strategy, destination points to create formation are made at the sphere coordinates around a moving target. Then the destination points are tracked using a fuzzy state feedback controller. Optimized artificial potential field (APF) algorithm is used to avoid collisions with targets, other UAVs, and static obstacles. Each UAV can choose the optimal trajectory to avoid obstacles and reset the formation after passing them. The simulation results show that multi-UAVs successfully surrounded and formed formation-pursuit of a moving target without colliding with the closest Euclidean distance between UAVs of 1.32957 m. UAVs with a target is 1.94359 m, and UAVs with static obstacles within a range of 1.60632 m.

Keywords—formation-pursuit, multi-UAVs, obstacle avoidance, task allocation, tracking control.

Full Text:

PDF

References


Y. Fu, X. Wang, L. Huan, and H. Zhu, "Multi-UAV formation control method based on modified artificial physics," 2016, doi: 10.1109/CCDC.2016.7531409.

_____________________________________________________________

R. Xue and G. Cai, "Formation flight control of multi-UAV system with communication constraints," J. Aerosp. Technol. Manag., vol. 8, no. 2, 2016, doi: 10.5028/jatm.v8i2.608.

_____________________________________________________________

A. Franchi, P. Stegagno, and G. Oriolo, "Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance," Auton. Robots, vol. 40, no. 2, 2016, doi: 10.1007/s10514-015-9450-3.

_____________________________________________________________

S. Martin, "Multi-agent flocking under topological interactions," Syst. Control Lett., vol. 69, no. 1, 2014, doi: 10.1016/j.sysconle.2014.04.004.

_____________________________________________________________

M. Rabah, A. Rohan, Y. J. Han, and S. H. Kim, "Design of fuzzy-PID controller for quadcopter trajectory-tracking," Int. J. Fuzzy Log. Intell. Syst., vol. 18, no. 3, 2018, doi: 10.5391/IJFIS.2018.18.3.204.

_____________________________________________________________

M. H. Lee and S. Yeom, "Detection and tracking of multiple moving vehicles with a UAV," Int. J. Fuzzy Log. Intell. Syst., vol. 18, no. 3, 2018, doi: 10.5391/IJFIS.2018.18.3.182.

_____________________________________________________________

R. Opromolla, G. Fasano, and D. Accardo, "A vision-based approach to uav detection and tracking in cooperative applications," Sensors (Switzerland), vol. 18, no. 10, 2018, doi: 10.3390/s18103391.

_____________________________________________________________

T. K. Venugopalan, K. Subramanian, and S. Sundaram, "Multi-UAV task allocation: A team-based approach," 2015, doi: 10.1109/SSCI.2015.17.

_____________________________________________________________

H. A. Kurdi et al., "Autonomous task allocation for multi-UAV systems based on the locust elastic behavior," Appl. Soft Comput. J., vol. 71, 2018, doi: 10.1016/j.asoc.2018.06.006.

_____________________________________________________________

J. Ma, W. Yao, W. Dai, H. Lu, J. Xiao, and Z. Zheng, "Cooperative Encirclement Control for a Group of Targets by Decentralized Robots with Collision Avoidance," in Chinese Control Conference, CCC, 2018, vol. 2018-July, doi: 10.23919/ChiCC.2018.8483768.

_____________________________________________________________

K. S. Lee, M. Ovinis, T. Nagarajan, R. Seulin, and O. Morel, "Autonomous patrol and surveillance system using unmanned aerial vehicles," 2015, doi: 10.1109/EEEIC.2015.7165356.

_____________________________________________________________

N. Nigam, "The multiple unmanned Air Vehicle persistent surveillance problem: A review," Machines, vol. 2, no. 1. 2014, doi: 10.3390/machines2010013.

_____________________________________________________________

A. T. Hafez, M. Iskandarani, S. N. Givigi, S. Yousefi, and A. Beaulieu, "UAVs in formation and dynamic encirclement via Model Predictive Control," in IFAC Proceedings Volumes (IFAC-PapersOnline), 2014, vol. 19, doi: 10.3182/20140824-6-za-1003.00890.

_____________________________________________________________

A. T. Hafez, A. J. Marasco, S. N. Givigi, M. Iskandarani, S. Yousefi, and C. A. Rabbath, "Solving Multi-UAV Dynamic Encirclement via Model Predictive Control," IEEE Trans. Control Syst. Technol., vol. 23, no. 6, 2015, doi: 10.1109/TCST.2015.2411632.

_____________________________________________________________

J. Sun, J. Tang, and S. Lao, "Collision Avoidance for Cooperative UAVs with Optimized Artificial Potential Field Algorithm," IEEE Access, vol. 5, 2017, doi: 10.1109/ACCESS.2017.2746752.

_____________________________________________________________

E. Ferrera, A. Alcántara, J. Capitán, A. R. Castaño, P. J. Marrón, and A. Ollero, “Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments,” Sensors (Basel)., vol. 18, no. 12, 2018, doi: 10.3390/s18124101.

_____________________________________________________________

T. Agustinah, F. Isdaryani, and M. Nuh, "Tracking control of quadrotor using static output feedback with modified command-generator tracker," Int. Rev. Autom. Control, vol. 9, no. 4, 2016, doi: 10.15866/ireaco.v9i4.9431.

_____________________________________________________________

N. Xuan-Mung and S. K. Hong, "Improved altitude control algorithm for quadcopter unmanned aerial vehicles," Appl. Sci., vol. 9, no. 10, 2019, doi: 10.3390/app9102122.

_____________________________________________________________

I. S. Asti, T. Agustinah, and A. Santoso, "Obstacle Avoidance with Energy Efficiency and Distance Deviation Using KNN Algorithm for Quadcopter," 2020, doi: 10.1109/ISITIA49792.2020.9163788.

_____________________________________________________________

Quanser, "QDrone Product Data Sheet v1.3," 2018, [Online]. Available: https://www.quanser.com/wp-content/uploads/2018/02/QDrone-Product-Data-Sheet-v1.3.pdf.

_____________________________________________________________

Y. Jiang, "A Survey of Task Allocation and Load Balancing in Distributed Systems," IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, 2016, doi: 10.1109/TPDS.2015.2407900.

_____________________________________________________________

O. Khatib, "Real-Time Obstacle Avoidance For Manipulators And Mobile Robots.," Int. J. Rob. Res., vol. 5, no. 1, 1986, doi: 10.1177/027836498600500106.




DOI: https://doi.org/10.12962/jaree.v6i2.310

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.