Fall Detection, Wearable Sensors & Artificial Intelligence: A Short Review

Arslan Ishtiaq, Zubair Saeed, Misha Urooj Khan, Aqsa Samer, Mamoona Shabbir, Waqar Ahmad

Abstract


Falls are a major public health concern among the elderly and the number of gadgets designed to detect them has increased significantly in recent years. This document provides a detailed summary of research done on fall detection systems, with comparisons across different types of studies. Its purpose is to be a resource for doctors and engineers who are planning or conducting field research. Following the examination, datasets, limitations, and future imperatives in fall detection were discussed in detail. The quantity of research using context-aware approaches continues to rise, but there is a new trend toward integrating fall detection into smartphones, as well as the use of artificial intelligence in the detection algorithm. Concerns with real-world performance, usability, and reliability are also highlighted.


Full Text:

PDF

References


N. Deshpande, E. J. Metter, F. Lauretani, S. Bandinelli, J. Guralnik, and L. Ferrucci, “Activity restriction induced by fear of falling and objective and subjective measures of physical function: a prospective cohort study,” J. Am. Geriatr. Soc., vol. 56, no. 4, pp. 615–620, Apr. 2008, doi: 10.1111/J.1532-5415.2007.01639.X.

T. M. Gill, C. S. Williams, and M. E. Tinetti, “Environmental hazards and the risk of nonsyncopal falls in the homes of community-living older persons,” Med. Care, vol. 38, no. 12, pp. 1174–1183, 2000, doi: 10.1097/00005650-200012000-00004.

WHO, “WHO global report on falls prevention in older age.” https://www.who.int/publications/i/item/9789241563536 (accessed Oct. 03, 2022).

E. R. Burns, J. A. Stevens, and R. Lee, “The direct costs of fatal and non-fatal falls among older adults - United States,” J. Safety Res., vol. 58, pp. 99–103, Sep. 2016, doi: 10.1016/J.JSR.2016.05.001.

S. Rastogi and J. Singh, “A systematic review on machine learning for fall detection system,” Comput. Intell., vol. 37, no. 2, pp. 951–974, May 2021, doi: 10.1111/COIN.12441.

F. Shu and J. Shu, “An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–17, Jan. 2021, doi: 10.1038/s41598-021-81115-9.

T. Xu and J. Liu, “A low-power fall detection method based on optimized TBM and RNN,” Digit. Signal Process., vol. 126, p. 103525, Jun. 2022, doi: 10.1016/J.DSP.2022.103525.

G. Şengül, M. Karakaya, S. Misra, O. O. Abayomi-Alli, and R. Damaševičius, “Deep learning based fall detection using smartwatches for healthcare applications,” Biomed. Signal Process. Control, vol. 71, p. 103242, Jan. 2022, doi: 10.1016/J.BSPC.2021.103242.

T. C. Kolobe, C. Tu, and P. A. Owolawi, “A Review on Fall Detection in Smart Home for Elderly and Disabled People,” J. Adv. Comput. Intell. Intell. Informatics, vol. 26, no. 5, pp. 747–757, Sep. 2022, doi: 10.20965/JACIII.2022.P0747.

N. De Raeve et al., “Bluetooth-Low-Energy-Based Fall Detection and Warning System for Elderly People in Nursing Homes,” J. Sensors, vol. 2022, 2022, doi: 10.1155/2022/9930681.

H. L. Le, D. N. Nguyen, Ngo-Thi-Thu-Trang, and H. N. Nguyen, “Applying PSO to improve the pedestrian fall detection rate using wearable sensor data,” Int. Conf. Adv. Commun. Technol. ICACT, vol. 2022-February, pp. 453–458, 2022, doi: 10.23919/ICACT53585.2022.9728904.

Z. Qian et al., “Development of a Real Time Wearable Fall Detection System in the Context of Internet of Things,” IEEE Internet Things J., 2022, doi: 10.1109/JIOT.2022.3181701.

H. Mankodiya et al., “XAI-Fall: Explainable AI for Fall Detection on Wearable Devices Using Sequence Models and XAI Techniques,” Math. 2022, Vol. 10, Page 1990, vol. 10, no. 12, p. 1990, Jun. 2022, doi: 10.3390/MATH10121990.

N. I. M. Amir, R. A. Dziyauddin, N. Mohamed, N. S. N. Ismail, N. S. A. Zulkifli, and N. M. Din, “Real-time Threshold-Based Fall Detection System Using Wearable IoT,” 2022 4th Int. Conf. Smart Sensors Appl., pp. 173–178, Jul. 2022, doi: 10.1109/ICSSA54161.2022.9870974.

F. Hussain, F. Hussain, M. Ehatisham-Ul-Haq, and M. A. Azam, “Activity-Aware Fall Detection and Recognition Based on Wearable Sensors,” IEEE Sens. J., vol. 19, no. 12, pp. 4528–4536, Jun. 2019, doi: 10.1109/JSEN.2019.2898891.

S. Z. H. Naqvi, M. Arooj, S. Aziz, M. U. Khan, M. A. Choudhary, and M. N. Ul Hassan, “Spectral Analysis of Lungs sounds for Classification of Asthma and Pneumonia Wheezing,” 2nd Int. Conf. Electr. Commun. Comput. Eng. ICECCE 2020, Jun. 2020, doi: 10.1109/ICECCE49384.2020.9179417.

A. Ullah, M. S. Khan, M. U. Khan, and F. Mujahid, “Automatic Classification of Lung Sounds Using Machine Learning Algorithms,” Proc. - 2021 Int. Conf. Front. Inf. Technol. FIT 2021, pp. 131–136, 2021, doi: 10.1109/FIT53504.2021.00033.

M. U. Khan, S. Samer, A. Samer, A. Mobeen, A. Arshad, and H. Khan, “Classification of phonocardiography based heart auscultations while listening to Tilawat-e-Quran and music using vibrational mode decomposition,” ICAEM 2021 - 2021 Int. Conf. Appl. Eng. Math. Proc., pp. 25–30, Aug. 2021, doi: 10.1109/ICAEM53552.2021.9547150.

M. U. Khan, H. Khan, M. Muneeb, Z. Abbasi, U. B. Abbasi, and N. K. Baloch, “Supervised machine learning based fast hand gesture recognition and classification using electromyography (EMG) signals,” ICAEM 2021 - 2021 Int. Conf. Appl. Eng. Math. Proc., pp. 81–86, Aug. 2021, doi: 10.1109/ICAEM53552.2021.9547148.

“(PDF) A Novel Intelligent Model For COVID-19 Detection Using Cough Auscultations and Hjorth Descriptors.” https://www.researchgate.net/publication/353636378_A_Novel_Intelligent_Model_For_COVID-19_Detection_Using_Cough_Auscultations_and_Hjorth_Descriptors (accessed Oct. 04, 2022).

M. U. Khan, A. Farman, A. U. Rehman, N. Israr, M. Z. H. Ali, and Z. A. Gulshan, “Automated System Design for Classification of Chronic Lung Viruses using Non-Linear Dynamic System Features and K-Nearest Neighbour,” Proc. 2021 Mohammad Ali Jinnah Univ. Int. Conf. Comput. MAJICC 2021, Jul. 2021, doi: 10.1109/MAJICC53071.2021.9526272.

M. U. Khan, S. Zuriat-E-Zehra Ali, A. Ishtiaq, K. Habib, T. Gul, and A. Samer, “Classification of Multi-Class Cardiovascular Disorders using Ensemble Classifier and Impulsive Domain Analysis,” Proc. 2021 Mohammad Ali Jinnah Univ. Int. Conf. Comput. MAJICC 2021, Jul. 2021, doi: 10.1109/MAJICC53071.2021.9526250.

“(PDF) Intelligent System Design for Early Diagnosis of Faults in Machine Bearings.” https://www.researchgate.net/publication/353636336_Intelligent_System_Design_for_Early_Diagnosis_of_Faults_in_Machine_Bearings (accessed Oct. 04, 2022).

“(PDF) Embedded System Design for Real-time Detection of Asthmatic Diseases Using Lung Sounds in Cepstral Domain.” https://www.researchgate.net/publication/353636147_Embedded_System_Design_for_Real-time_Detection_of_Asthmatic_Diseases_Using_Lung_Sounds_in_Cepstral_Domain (accessed Oct. 04, 2022).

B. Andò, S. Baglio, C. O. Lombardo, and V. Marletta, “An Event Polarized Paradigm for ADL Detection in AAL Context,” IEEE Trans. Instrum. Meas., vol. 64, no. 7, pp. 1814–1825, Jul. 2015, doi: 10.1109/TIM.2014.2385144.

M. Saleh and R. L. B. Jeannes, “Elderly Fall Detection Using Wearable Sensors: A Low Cost Highly Accurate Algorithm,” IEEE Sens. J., vol. 19, no. 8, pp. 3156–3164, Apr. 2019, doi: 10.1109/JSEN.2019.2891128.

M. Hemmatpour, R. Ferrero, F. Gandino, B. Montrucchio, and M. Rebaudengo, “Nonlinear predictive threshold model for real-time abnormal gait detection,” J. Healthc. Eng., vol. 2018, 2018, doi: 10.1155/2018/4750104.

J. Silva et al., “Design and Evaluation of a Fall Prevention Multiplayer Game for Senior Care Centres,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11112 LNCS, pp. 103–114, 2018, doi: 10.1007/978-3-319-99426-0_9.

TianYonglong, LeeGuang-He, HeHao, HsuChen-Yu, and KatabiDina, “RF-Based Fall Monitoring Using Convolutional Neural Networks,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 2, no. 3, pp. 1–24, Sep. 2018, doi: 10.1145/3264947.

N. Nahar, M. S. Hossain, and K. Andersson, “A Machine Learning Based Fall Detection for Elderly People with Neurodegenerative Disorders,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12241 LNAI, pp. 194–203, 2020, doi: 10.1007/978-3-030-59277-6_18/COVER.

M. U. Khan et al., “Artificial neural network-based cardiovascular disease prediction using spectral features,” Comput. Electr. Eng., vol. 101, p. 108094, Jul. 2022, doi: 10.1016/J.COMPELECENG.2022.108094.

M. U. Khan, Z. Saeed, A. Raza, Z. Abbasi, S. Z.-Z. Ali, and H. Khan, “Deep Learning-based Decision Support System for classification of COVID-19 and Pneumonia patients,” JAREE (Journal Adv. Res. Electr. Eng., vol. 6, no. 1, Apr. 2022, doi: 10.12962/JAREE.V6I1.229.

S. Z. H. Naqvi, M. U. Khan, A. Raza, Z. Saeed, Z. Abbasi, and S. Z. E. Z. Ali, “Deep Learning Based Intelligent Classification of Covid-19 Pneumonia Using Cough Auscultations,” IMTIC 2021 - 6th Int. Multi-Topic ICT Conf. AI Meets IoT Towar. Next Gener. Digit. Transform., 2021, doi: 10.1109/IMTIC53841.2021.9719740.

Z. Saeed, M. U. Khan, A. Raza, N. Sajjad, S. Naz, and A. Salal, “Identification of Leaf Diseases in Potato Crop Using Deep Convolutional Neural Networks (DCNNs),” ICET 2021 - 16th Int. Conf. Emerg. Technol. 2021, Proc., 2021, doi: 10.1109/ICET54505.2021.9689807.

M. U. Khan, M. A. Abbasi, Z. Saeed, M. Asif, A. Raza, and U. Urooj, “Deep learning based Intelligent Emotion Recognition and Classification System,” Proc. - 2021 Int. Conf. Front. Inf. Technol. FIT 2021, pp. 25–30, 2021, doi: 10.1109/FIT53504.2021.00015.

A. Raza, M. U. Khan, Z. Saeed, S. Samer, A. Mobeen, and A. Samer, “Classification of Eye Diseases and Detection of Cataract using Digital Fundus Imaging (DFI) and Inception-V4 Deep Learning Model,” Proc. - 2021 Int. Conf. Front. Inf. Technol. FIT 2021, pp. 137–142, 2021, doi: 10.1109/FIT53504.2021.00034.

Z. Saeed, M. U. Khan, A. Raza, H. Khan, J. Javed, and A. Arshad, “Classification of Pulmonary Viruses X-ray and Detection of COVID-19 Based on Invariant of Inception-V 3 Deep Learning Model,” 2021 Int. Conf. Comput. Electron. Electr. Eng. ICE Cube 2021 - Proc., 2021, doi: 10.1109/ICECUBE53880.2021.9628338.

A. S. Syed, D. Sierra-Sosa, A. Kumar, and A. Elmaghraby, “A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition,” Sensors (Basel)., vol. 22, no. 7, Apr. 2022, doi: 10.3390/S22072547.

M. Waheed, H. Afzal, and K. Mehmood, “NT-FDS—A Noise Tolerant Fall Detection System Using Deep Learning on Wearable Devices,” Sensors 2021, Vol. 21, Page 2006, vol. 21, no. 6, p. 2006, Mar. 2021, doi: 10.3390/S21062006.

S. K. Yadav, A. Luthra, K. Tiwari, H. M. Pandey, and S. A. Akbar, “ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling,” Knowledge-Based Syst., vol. 239, p. 107948, Mar. 2022, doi: 10.1016/J.KNOSYS.2021.107948.

G. Şengül, M. Karakaya, S. Misra, O. O. Abayomi-Alli, and R. Damaševičius, “Deep learning based fall detection using smartwatches for healthcare applications,” Biomed. Signal Process. Control, vol. 71, p. 103242, Jan. 2022, doi: 10.1016/J.BSPC.2021.103242.

D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, and M. Paluri, “A Closer Look at Spatiotemporal Convolutions for Action Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6450–6459, Dec. 2018, doi: 10.1109/CVPR.2018.00675.

Y. Yang, H. Yang, Z. Liu, Y. Yuan, and X. Guan, “Fall detection system based on infrared array sensor and multi-dimensional feature fusion,” Measurement, vol. 192, p. 110870, Mar. 2022, doi: 10.1016/J.MEASUREMENT.2022.110870.

B. Hadjadji, M. Saumard, and M. Aron, “Multi-oriented run length based static and dynamic features fused with Choquet fuzzy integral for human fall detection in videos,” J. Vis. Commun. Image Represent., vol. 82, p. 103375, Jan. 2022, doi: 10.1016/J.JVCIR.2021.103375.

D. R. Beddiar, M. Oussalah, and B. Nini, “Fall detection using body geometry and human pose estimation in video sequences,” J. Vis. Commun. Image Represent., vol. 82, p. 103407, Jan. 2022, doi: 10.1016/J.JVCIR.2021.103407.

M. E. N. Gomes, D. Macêdo, C. Zanchettin, P. S. G. de-Mattos-Neto, and A. Oliveira, “Multi-human Fall Detection and Localization in Videos,” Comput. Vis. Image Underst., vol. 220, p. 103442, Jul. 2022, doi: 10.1016/J.CVIU.2022.103442.

M. Vergin, R. Sarobin, and L. J. Anbarasi, “Fall Detection among Elderly Person using FallCNN and Transfer Learning Models,” Aug. 2022, doi: 10.21203/RS.3.RS-1884093/V1.

S. Saurav, R. Saini, and S. Singh, “A dual-stream fused neural network for fall detection in multi-camera and $$360^{circ }$$ 360 ∘ videos,” Neural Comput. Appl. 2021 342, vol. 34, no. 2, pp. 1455–1482, Sep. 2021, doi: 10.1007/S00521-021-06495-5.

F. Harrou, N. Zerrouki, Y. Sun, and A. Houacine, “Vision-based fall detection system for improving safety of elderly people,” IEEE Instrum. Meas. Mag., vol. 20, no. 6, pp. 49–55, Dec. 2017, doi: 10.1109/MIM.2017.8121952.




DOI: https://doi.org/10.12962/jaree.v6i2.323

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.