Smart Traffic Light Using YOLO Based Camera with Deep Reinforcement Learning Algorithm
Abstract
Full Text:
PDFReferences
B. Pishue, “2021 INRIX Global Traffic Scorecard,” p. 21, 2021.
B. Pishue, “2020 INRIX Global Traffic Scorecard,” p. 23, 2020.
G. Nurinda Abdi, S. Priyanto, and S. Malkamah, “HUBUNGAN VOLUME, KECEPATAN DAN KEPADATAN LALU LINTAS PADA RUAS JALAN PADJAJARAN (RING ROAD UTARA), SLEMAN,” Teknisia, vol. XXIV, no. 1, pp. 55–64, May 2019, doi: 10.20885/teknisia.vol24.iss1.art6.
E. N. Julianto, “HUBUNGAN ANTARA KECEPATAN, VOLUME DAN KEPADATAN LALU LINTAS RUAS JALAN SILIWANGI SEMARANG,” p. 10, 2010.
J. D. Ansusanto and S. Tanggu, “ANALISIS KINERJA DAN MANAJEMEN PADA SIMPANG DENGAN DERAJAT KEJENUHAN TINGGI,” vol. 12, no. 2, p. 8, 2016.
A. N. Aulia Yusuf, A. Setyo Arifin, and F. Yuli Zulkifli, “Recent development of smart traffic lights,” IAES Int. J. Artif. Intell. IJ-AI, vol. 10, no. 1, p. 224, Mar. 2021, doi: 10.11591/ijai.v10.i1.pp224-233.
T.-N. Doan and M.-T. Truong, “Real-time vehicle detection and counting based on YOLO and DeepSORT,” in 2020 12th International Conference on Knowledge and Systems Engineering (KSE), Can Tho, Vietnam, Nov. 2020, pp. 67–72. doi: 10.1109/KSE50997.2020.9287483.
A. Gupta, A. Verma, A. Yadav, and A. M, “YOLO OBJECT DETECTION USING OPENCV,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 10, Feb. 2021, doi: 10.33564/IJEAST.2021.v05i10.036.
J. D. Martín-Guerrero and L. Lamata, “Reinforcement Learning and Physics,” Appl. Sci., vol. 11, no. 18, p. 8589, Sep. 2021, doi: 10.3390/app11188589.
S. S. Mousavi, M. Schukat, and E. Howley, “Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning.” arXiv, May 27, 2017. Accessed: Jun. 12, 2022. [Online]. Available: http://arxiv.org/abs/1704.08883
X. Liang, X. Du, G. Wang, and Z. Han, “Deep Reinforcement Learning for Traffic Light Control in Vehicular Networks,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1243–1253, Feb. 2019, doi: 10.1109/TVT.2018.2890726.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection.” arXiv, Apr. 22, 2020. Accessed: Jun. 13, 2022. [Online]. Available: http://arxiv.org/abs/2004.10934
M. Semrau, J. Erdmann, B. Friedrich, and R. Waldmann, “1 Simulation framework for testing ADAS in Chinese traffic situations,” p. 11, 2016.
A. Vidali, L. Crociani, G. Vizzari, and S. Bandini, “A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management,” p. 9, 2019.
K. G. Kim, “Book Review: Deep Learning,” Healthc. Inform. Res., vol. 22, no. 4, p. 351, 2016, doi: 10.4258/hir.2016.22.4.351.
DOI: https://doi.org/10.12962/jaree.v7i1.335
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.