Comparative Performance of Various Wavelet Transformation for the Detection of Normal and Arrhythmia ECG Signal
Abstract
Full Text:
PDFReferences
REFERENCES
K. Ratna, dkk, “Keterampilan Pemasangan Elektrokardiografi
(EKG),” vol. I, no. Elektrokardiografi, pp. 1–10, 2019.
C. S. Kalangi, E. L. Jim, and V. F. F. Joseph, “Gambaran aritmia pada
pasien penyakit jantung koroner di RSUP Prof. Dr. R. D. Kandou
Manado periode 1 Januari 2015 – 31 Desember 2015,” e-CliniC, vol.
, no. 2, 2016.
H. Sulastomo et al., “Buku Manual Keterampilan Klinis Interpretasi
Pemeriksaan Elektrokardiografi ( Ekg ),” Skillslab.Fk.Uns.Ac.Id, pp.
–30, 2019.
O. Heriana, A. Matooq, and A. Misbah, “Denoising Perbandingan
Unjuk Kerja Transformasi Wavelet dalam Denoising Sinyal ECG,”
vol. 17, no. 1, pp. 1–6, 2017
A. Agrawal and D. H. Gawali, “Comparative study of ECG feature
extraction methods,” RTEICT 2017 - 2nd IEEE Int. Conf. Recent
Trends Electron. Inf. Commun. Technol. Proc., vol. 2018–Janua, no.
c, pp. 246–250, 2017
M. Alfaouri and K. Daqrouq, “SCI-PUBLICATIONS Author
Manuscript ECG Signal Denoising By Wavelet Transform
Thresholding SCI-PUBLICATION Author Manuscript,” vol. 5, no. 3,
pp. 276–281, 2008.
Z. Wang, J. Zhu, T. Yan, and L. Yang, “A new modified waveletbased ECG denoising,” Comput. Assist. Surg., vol. 24, no. S1, pp.
–183, 2019
S. Das, S. Mukherjee, S. Chatterjee, and H. K. Chatterjee, “Noise
elimination and ECG R peak detection using wavelet transform,”
IEEE 7th Annu. Ubiquitous Comput. Electron. Mob. Commun.
Conf. UEMCON 2016, no. October, 2016
S. Rahman, C. Karmakar, I. Natgunanathan, J. Yearwood, and M.
Palaniswami, “Robustness of electrocardiogram signal quality
indices,” J. R. Soc. Interface, vol. 19, no. 189, 2022
H. Yang and Z. Wei, “Arrhythmia Recognition and Classification
Using Combined Parametric and Visual Pattern Features of ECG
Morphology,” IEEE Access, vol. 8, pp. 47103–47117, 2020
R. C. Conditions, “Performances of Orthogonal Wavelet Division
Multiplex ( OWDM ) System Under p erformances o f o rthogonal w
avelet d ivision m ultiplex ( owdm ) s ystem u nder awgn , r ayleigh ,
a nd r icean c hannel c onditions,” no. june, 2016
H. Kim, S. Member, R. F. Yazicioglu, and P. Merken, “ECG Signal
Compression and Classification Algorithm With Quad Level Vector
for ECG Holter System,” no. June 2014, 2010
Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia
Database. IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001).
(PMID: 11446209)
‘PhysioBank MIT-BIH Arrhythmia Database’, Physionet.org.
[Online]. Available: https://physionet.org/content/mitdb/1.0.0/
‘PhysioBank MIT-BIH Normal Sinus Database’, Physionet.org.
[Online]. Available: https://physionet.org/content/nsrdb/1.0.0/
‘PhysioBank ATM’, Physionet.org. [Online]. Available:
https://archive.physionet.org/cgi-bin/atm/ATM
‘Matlab Wavelet Tools’, mathworks.com. [Online]. Available:
https://www.mathworks.com/help/wavelet/
R. A. Alharbey, S. Alsubhi, K. Daqrouq, and A. Alkhateeb, “The
continuous wavelet transform using for natural ECG signal
arrhythmias detection by statistical par
DOI: https://doi.org/10.12962/jaree.v7i1.343
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.