Prosumer-Based Optimization of Educational Building Grid Connected with Plug-in Electric Vehicle Integration using Modified Firefly Algorithm

Yusdiar Sandy, Ardyono Priyadi, Vita Lystianingrum

Abstract


Educational buildings have the potential to support government programs in efforts to reduce carbon emissions. Installing photovoltaics and providing charging stations can reduce the use of fossil fuels and increase the number of electric vehicle users. This paper aims to optimize educational buildings when implementing a prosumer scheme and integrating Plug-in Electric Vehicles (PEV) to meet building electricity demands. Optimization is carried out through two case studies, namely the application of a prosumer scheme with independent photovoltaic generators with and without PEV integration. The optimization process uses the Modified Firefly Algorithm. The results obtained by applying the prosumer scheme to educational buildings, the two case studies can produce LCOE cheaper than just buying electricity from the grid. Optimizing results show that photovoltaic installation and charging stations in educational buildings can be beneficial when implementing a prosumer scheme.


Full Text:

PDF

References


REFERENCES

Kemenkeu, “Perpres Nilai Ekonomi Karbon Ditetapkan,

Indonesia Siap Capai Target Penurunan Emisi Karbon 2030,”

https://fiskal.kemenkeu.go.id/publikasi/siaran-pers-detil/

A. L. Bukar, C. W. Tan, and K. Y. Lau, “Optimal sizing of an

autonomous photovoltaic/wind/battery/diesel generator microgrid

using grasshopper optimization algorithm,” Sol. Energy, vol. 188,

, doi: 10.1016/j.solener.2019.06.050.

İ. Çetinbaş, B. Tamyürek, and M. Demirtaş, “Sizing optimization

and design of an autonomous AC microgrid for commercial loads

using Harris Hawks Optimization algorithm,” Energy Convers.

Manag., vol. 245, 2021, doi: 10.1016/j.enconman.2021.114562.

B. A. Bhayo, H. H. Al-Kayiem, S. I. U. Gilani, and F. B. Ismail,

“Power management optimization of hybrid solar photovoltaicbattery integrated with pumped-hydro-storage system for

standalone electricity generation,” Energy Convers. Manag., vol.

, 2020, doi: 10.1016/j.enconman.2020.112942.

B. Naghibi, M. A. S. Masoum, and S. Deilami, “Effects of V2H

Integration on Optimal Sizing of Renewable Resources in Smart

Home Based on Monte Carlo Simulations,” IEEE Power Energy

Technol. Syst. J., vol. 5, no. 3, 2018, doi:

1109/jpets.2018.2854709.

S. Liaquat et al., “Application of Dynamically Search Space

Squeezed Modified Firefly Algorithm to a Novel Short Term

Economic Dispatch of Multi-Generation Systems,” IEEE Access,

vol. 9, 2021, doi: 10.1109/ACCESS.2020.3046910.

PLN, “Penetapan Penyesuaian Tarif Tenaga Listrik (Tarif

Adjustment) Januari - Maret 2023,” 2023.

https://web.pln.co.id/statics/uploads/2022/12/ttl-jan-mar-

jpg.

Kementerian-ESDM-RI, “Peraturan Menteri Energi dan Sumber

Daya Alam Mineral Republik Indonesia Nomor 49 Tahun 2018

Tentang: Penggunaan Sistem Pembangkit Listrik Tenaga Surya

Atap oleh Konsumen PT Perusahaan Listrik Negara (Persero),”

https://jdih.esdm.go.id/peraturan/Permen ESDM Nomor 49

Tahun 2018.pdf.

R. Ayop and C. W. Tan, “A comprehensive review on

photovoltaic emulator,” Renewable and Sustainable Energy

Reviews, vol. 80. 2017, doi: 10.1016/j.rser.2017.05.217.

B. A. Bhayo, H. H. Al-Kayiem, and S. I. Gilani, “Assessment of

standalone solar PV-Battery system for electricity generation and

utilization of excess power for water pumping,” Sol. Energy, vol.194, 2019, doi: 10.1016/j.solener.2019.11.026.

P. Kou, D. Liang, L. Gao, and F. Gao, “Stochastic Coordination

of Plug-In Electric Vehicles and Wind Turbines in Microgrid: A

Model Predictive Control Approach,” IEEE Trans. Smart Grid,

vol. 7, no. 3, 2016, doi: 10.1109/TSG.2015.2475316.

Numbeo.com, “Traffic in Indonesia,” 2022.

https://www.numbeo.com/traffic/country_result.jsp?country=

Indonesia.

Santikaaristi, “Rasakan Hematnya Pakai Mobil Listrik,”

web.pln.co.id, 2022. https://web.pln.co.id/cms/media/siaranpers/2022/07/rasakan-hematnya-pakai-mobil-listrik-fitra-eri-isidaya-rp-70-ribu-bisa-tempuh-jarak-300-km/#:~:text=Fitra Eri

mengungkapkan%2C untuk 1,listrik melaju hingga 300 km.

K. Kusakana, “Feasibility analysis of river off-grid hydrokinetic

systems with pumped hydro storage in rural applications,”

Energy Convers. Manag., vol. 96, 2015, doi:

1016/j.enconman.2015.02.089.

“Real interest rate (%) - Indonesia,” The Word Bank, 2022. https:

//data.worldbank.org/indicator/FR.INR.RINR?locations=ID.

M. Das, M. A. K. Singh, and A. Biswas, “Techno-economic

optimization of an off-grid hybrid renewable energy system using

metaheuristic optimization approaches – Case of a radio

transmitter station in India,” Energy Convers. Manag., vol. 185,

, doi: 10.1016/j.enconman.2019.01.107.

European Commision, “Photovoltaic Geographical Information

System.” https://re.jrc.ec.europa.eu/pvg_tools/en/.

B. M. Hussein and A. S. Jaber, “Unit commitment based on

modified firefly algorithm,” Meas. Control (United Kingdom),

vol. 53, no. 3–4, 2020, doi: 10.1177/0020294019890630.

A. Tjahjono, D. O. Anggriawan, A. K. Faizin, A. Priyadi, M.

Pujiantara, and M. H. Purnomo, “Optimal coordination of

overcurrent relays in radial system with distributed generation

using modified firefly algorithm,” Int. J. Electr. Eng. Informatics,

vol. 7, no. 4, 2015, doi: 10.15676/ijeei.2015.7.4.12.

R. Atia and N. Yamada, “More accurate sizing of renewable

energy sources under high levels of electric vehicle integration,”

Renew. Energy, vol. 81, 2015, doi: 10.1016/j.renene.2015.04.010.




DOI: https://doi.org/10.12962/jaree.v7i2.350

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.