Fault-Tolerant Control for Multi-Quadcopter with Suspended Payload under Wind Disturbance

ALIF AL FARRAS, ARI SANTOSO, YURID EKA NUGRAHA

Abstract


Delivering payload with multiple quadcopters necessitates a reliable backup system. This research introduces a fault-tolerant design specifically for multi-drone payload transportation. The system employs formation control, ensuring the weight is evenly distributed among all functioning drones. This research tackles the challenge of reliable payload delivery with multi-drone systems. It proposes a new fault-tolerant control system specifically designed for this purpose. The system addresses a limitation in existing solutions by incorporating a simple PD controller alongside a fault-tolerant strategy. This approach allows the system to maintain operation even if a drone malfunctions. The paper further demonstrates the system's effectiveness through simulations. Results show the system's ability to maintain stability with minimal altitude loss (only 6.3cm) and rapid position reconfiguration (within 3.96 seconds) even under windy conditions. These findings highlight the potential of this fault-tolerant design to significantly improve multi-drone payload delivery, especially for missions requiring high levels of stability and redundancy.

Full Text:

PDF

References


Chen, W. C., Lin, C. L., Chen, Y. Y., & Cheng, H. H. (2023). Quadcopter Drone for Vision-Based Autonomous Target Following. Aerospace, 10(1), 82.

Wu, S., Li, R., Shi, Y., & Liu, Q. (2021). Vision-based target detection and tracking system for a quadcopter. IEEE Access, 9, 62043-62054.

Vong, C. H., Ryan, K., & Chung, H. (2021). Trajectory tracking control of quadcopters under tunnel effects. Mechatronics, 78, 102628.

Habibbayli, T. H. (2022). Formation of the quadcopter flight path under overland monitoring using neuro-fuzzy modeling methods. Mathematical machines and systems, 3, 97-107.

Sato, R., Tanaka, K., Ishida, H., Koguchi, S., Pauline Ramos Ramirez, J., Matsukura, H., & Ishida, H. (2020). Detection of gas drifting near the ground by drone hovering over: Using airflow generated by two connected quadcopters. Sensors, 20(5), 1397.

Dutta, A., Chanda, A., Das, K., Das, S. C., Dwibedi, A., Bose, A., & Das, S. (2020). Self-balancing multipurpose quadcopter for surveillance system. Int. J. Res. Appl. Sci. Eng. Technol, 8, 381-384.

Alsoliman, A., Rigoni, G., Callegaro, D., Levorato, M., Pinotti, C. M., & Conti, M. (2023). Intrusion detection framework for invasive fpv drones using video streaming characteristics. ACM Transactions on Cyber-Physical Systems, 7(2), 1-29.

Siddiqui, W. A., Srivastava, M. C., Krishnan, S., & Verma, V. (2024). Design and Fabrication of FPV Racing Drone. Journal of Mechanical and Construction Engineering (JMCE), 4(1), 1-8.

Hanover, D., Loquercio, A., Bauersfeld, L., Romero, A., Penicka, R., Song, Y., ... & Scaramuzza, D. (2024). Autonomous drone racing: A survey. IEEE Transactions on Robotics.

Li, B., Li, S., Wang, C., Fan, R., Shao, J., & Xie, G. (2021, October). Distributed Circle Formation Control for Quadrotors Based on Multi-agent Deep Reinforcement Learning. In 2021 China Automation Congress (CAC) (pp. 4750-4755). IEEE.

Nurjanah, S., Agustinah, T., & Fuad, M. (2022). Cooperative position-based formation-pursuit of moving targets by multi-uavs with collision avoidance. JAREE (Journal on Advanced Research in Electrical Engineering), 6(2).

Liu, H., Wang, Y., Lewis, F. L., & Valavanis, K. P. (2020). Robust formation tracking control for multiple quadrotors subject to switching topologies. IEEE Transactions on Control of Network Systems, 7(3), 1319-1329.

Chen, G., Peng, P., Zhang, P., & Dong, W. (2023). Risk-aware trajectory sampling for quadrotor obstacle avoidance in dynamic environments. IEEE Transactions on Industrial Electronics.

Çorbacı, F. K., & Doğan, Y. E. (2023). An Approach to Preliminary Design of a Quadrotor Cargo UAV. International Journal of Aviation Science and Technology, 4(02), 63-74.

Saiella, L., Cristofaro, A., Ferro, M., & Vendittelli, M. (2021, June). Fault-tolerant formation control of a team of quadrotors with a suspended payload. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1-9). IEEE.

Rinaldi, M., Primatesta, S., & Guglieri, G. (2023). A comparative study for control of quadrotor UAVs. Applied Sciences, 13(6), 3464.

Allison, S., Bai, H., & Jayaraman, B. (2020). Wind estimation using quadcopter motion: A machine learning approach. Aerospace Science and Technology, 98, 105699.

Dhiman, K. K., Kothari, M., & Abhishek, A. (2020). Autonomous load control and transportation using multiple quadrotors. Journal of Aerospace Information Systems, 17(8), 417-435.

Klausen, K., Meissen, C., Fossen, T. I., Arcak, M., & Johansen, T. A. (2018). Cooperative control for multirotors transporting an unknown suspended load under environmental disturbances. IEEE Transactions on Control Systems Technology, 28(2), 653-660.




DOI: https://doi.org/10.12962/jaree.v8i2.406

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.