Classification of Diabetic Retinopathy Using ResNet50

La Ode Ansyarullah S. Sagala, Agung Wahyu Setiawan

Abstract


Deep learning has been proposed as an automated solution for classifying the severity levels of Diabetic Retinopathy (DR). In this study, we utilized ResNet50 architecture to classify DR using the APTOS2019 dataset. As an initial step, we initialized the model with pre-trained weights from ResNet50 on ImageNet and implemented augmentation and resampling during training. We adopted an ensemble approach combined with classifiers such as SVM, Random Forest, and Logistic Regression, resulting in a ResNet50-Ensemble (SVM+RF+LR), with outputs obtained using a Soft Voting Classifier. The model achieved an accuracy of 85%, with a precision of 0.72, recall of 0.71, and F1-score of 0.71. The AUC values for the normal, mild, moderate, severe, and proliferative classes were 1.00, 0.96, 0.95, 0.95, and 0.91, respectively, with a Macro-average AUC of 0.96. These findings indicate that the appropriate use of ensemble methods can significantly enhance DR classification performance with suitable optimization strategies.

Full Text:

PDF

References


R. Yasashvini, V. Raja Sarobin M, R. Panjanathan, S. Graceline Jasmine, dan L. Jani Anbarasi, “Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks,” Symmetry (Basel)., vol. 14, no. 9, 2022, doi: 10.3390/sym14091932.

M. Saini dan S. Susan, “Diabetic retinopathy screening using deep learning for multi-class imbalanced datasets,” Comput. Biol. Med., vol. 149, no. August, hal. 105989, 2022, doi: 10.1016/j.compbiomed.2022.105989.

A. Mustapha, L. Mohamed, H. Hamid, dan K. Ali, “Diabetic Retinopathy Classification Using ResNet50 and VGG-16 Pretrained Networks,” Int. J. Comput. Eng. Data Sci., vol. 1, no. 1, hal. 2737–8543, 2021, [Daring]. Tersedia pada: www.ijceds.com.

N. M. A. Tajudin et al., “Deep learning in the grading of diabetic retinopathy: A review,” IET Comput. Vis., vol. 16, no. 8, hal. 667–682, 2022, doi: 10.1049/cvi2.12116.

M. Y. T. Yip et al., “Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy,” npj Digit. Med., vol. 3, no. 1, hal. 31–34, 2020, doi: 10.1038/s41746-020-0247-1.

M. Z. Atwany, A. H. Sahyoun, dan M. Yaqub, “Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey,” IEEE Access, vol. 10, hal. 28642–28655, 2022, doi: 10.1109/ACCESS.2022.3157632.

S. Taufiqurrahman, A. Handayani, B. R. Hermanto, dan T. L. E. R. Mengko, “Diabetic Retinopathy Classification Using A Hybrid and Efficient MobileNetV2-SVM Model,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2020-Novem, hal. 235–240, 2020, doi: 10.1109/TENCON50793.2020.9293739.

R. Patel dan A. Chaware, “Transfer learning with fine-tuned MobileNetV2 for diabetic retinopathy,” 2020 Int. Conf. Emerg. Technol. INCET 2020, hal. 6–9, 2020, doi: 10.1109/INCET49848.2020.9154014.

Z. Mungloo-Dilmohamud, M. H. M. Khan, K. Jhumka, B. N. Beedassy, N. Z. Mungloo, dan C. Peña-Reyes, “Balancing Data through Data Augmentation Improves the Generality of Transfer Learning for Diabetic Retinopathy Classification,” Appl. Sci., vol. 12, no. 11, 2022, doi: 10.3390/app12115363.

B. Graham, “Kaggle Diabetic Retinopathy Detection competition report,” Kaggle, hal. 1–9, 2015.

J. Zhang, B. Xie, X. Wu, R. Ram, dan D. Liang, “Classification of Diabetic Retinopathy Severity in Fundus Images with DenseNet121 and ResNet50,” hal. 1–15, 2021, [Daring]. Tersedia pada: http://arxiv.org/abs/2108.08473.

R. N. Lazuardi, N. Abiwinanda, T. H. Suryawan, M. Hanif, dan A. Handayani, “Automatic diabetic retinopathy classification with efficientnet,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2020-Novem, hal. 756–760, 2020, doi: 10.1109/TENCON50793.2020.9293941.

K. He, X. Zhang, S. Ren, dan J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016, vol. 7, no. 1, hal. 770–778, doi: 10.1109/CVPR.2016.90.

S. S. Mondal, N. Mandal, K. K. Singh, A. Singh, dan I. Izonin, “EDLDR: An Ensemble Deep Learning Technique for Detection and Classification of Diabetic Retinopathy,” Diagnostics, vol. 13, no. 1, hal. 124, Des 2022, doi: 10.3390/diagnostics13010124.

H. Narasimhan, W. Pan, P. Kar, P. Protopapas, dan H. G. Ramaswamy, “Optimizing the Multiclass F-Measure via Biconcave Programming,” 2016 IEEE 16th Int. Conf. Data Min., hal. 1101–1106, 2017, doi: 10.1109/icdm.2016.0143.

S. Qummar et al., “A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection,” IEEE Access, vol. 7, hal. 150530–150539, 2019, doi: 10.1109/ACCESS.2019.2947484.

K. Liu, T. Si, C. Huang, Y. Wang, H. Feng, dan J. Si, “Diagnosis and detection of diabetic retinopathy based on transfer learning,” Multimed. Tools Appl., vol. 83, no. 35, hal. 82945–82961, 2024, doi: 10.1007/s11042-024-18792-x.

A. Eko, M. Hazmi, C. Mandiri, Y. Azhar, dan F. Bimantoro, “Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network,” vol. 6, no. March, hal. 12–18, 2022.

M. K. Yaqoob, S. F. Ali, M. Bilal, M. S. Hanif, dan U. M. Al-Saggaf, “Resnet based deep features and random forest classifier for diabetic retinopathy detection†,” Sensors, vol. 21, no. 11, hal. 1–14, 2021, doi: 10.3390/s21113883.

C. Mohanty et al., “Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy,” Sensors, vol. 23, no. 12, hal. 5726, Jun 2023, doi: 10.3390/s23125726.




DOI: https://doi.org/10.12962/jaree.v9i2.436

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.