A Stress Level Monitoring System for Rescue Teams During Search and Rescue Operations Based on Electroencephalography

dedy hariyadi, adhi dharma wibawa, wirawan wirawan

Abstract


Search and Rescue (SAR) officers work in high-risk conditions that require physical and mental resilience. Prolonged stress can affect the performance and success of SAR operations. This study evaluates the effectiveness of Electroencephalography (EEG) coherence analysis as a method for monitoring stress in SAR personnel. Using the OpenBCI EEG device and electrodes in the F3 and F4 areas, the brain activity of SAR personnel was recorded in two conditions, office activity (baseline) and rescue operations (SAR condition). The data collection for this research involved the same participants in both baseline and SAR operation conditions, resulting in 30 raw EEG data for further analysis. Data collection on operational conditions was carried out while the rescue officers conducted a search and rescue operation for a capsized boat in the Bengawan Solo River, Ngadirejo Village, Tuban Regency. Data analyzed based on coherence values obtained through the Power Spectral Density (PSD) features of alpha, beta, and gamma sub-band to detect changes related to stress levels. The results showed an increase in coherence in the alpha sub-band by 85.5%, beta sub-band by 92.9%, and gamma sub-band by up to 94.9% during moderate stress conditions, reflecting increased attention, alertness, and intensive information processing required in emergency situations. These findings indicate that EEG coherence analysis can be an effective tool for monitoring stress in SAR personnel in real-time.


Full Text:

PDF

References


І. Коваль, dan K. Y. Dovhal,“Features of the experience of stress by rescuers at different stages of professionalization”Iss: 2, pp 41-452023 doi.org/10.32782/3041-1297/2023-2-6.

G Sallis, D. F. Catherwood, G. K. Edgar, S Baker, dan D. Brookes,“Situation awareness and habitual or resting bias in high-pressure fire-incident training command decisions”Fire Safety Journal pp 103539-103539 Januari 2022 doi.org/ 10.1016/j.firesaf.2022.103539.

T. T. Finseth, M. C. Dorneich, S. Vardeman; N. Keren, dan W. D. Franke, “Real-Time Personalized Physiologically Based Stress Detection for Hazardous Operations”IEEE Access Vol. 11, pp 25431-25454 Januari 2023 doi.org/10.1109/access.2023.3254134.

S. Bakare, S. Kuge, S. Sugandhi, S. Warad, dan V. Panguddi, "Detection of Mental Stress using EEG signals - Alpha, Beta, Theta, and Gamma Bands" 2024 5th International Conference for Emerging Technology (INCET) IEEE May 2024 doi.org/10.1109/INCET61516.2024.10592994.

Y. Pamungkas, A. D. Wibawa, and M. H. Purnomo, “EEG DataAnalytics to Distinguish Happy and Sad Emotions Based onStatistical Features,” in 2021 4th International Seminar on Researchof Information Technology and Intelligent Systems, ISRITI 2021,Institute of Electrical and Electronics Engineers Inc., 2021, pp. 345–350. doi: 10.1109/ISRITI54043.2021.9702766.

A. D. Wibawa, U. W. Astuti, N. H. Saputra, A. Mas, and Y.Pamungkas, “Classifying Stress Mental State by using PowerSpectral Density of Electroencephalography (EEG),” in ICITEE2022 - Proceedings of the 14th International Conference onInformation Technology and Electrical Engineering, Institute ofElectrical and Electronics Engineers Inc., 2022, pp. 235–240. doi:10.1109/ICITEE56407.2022.9954069.

A. D. Wibawa, B. S. Y. Mohammad, M. A. K. Fata, F. A. Nuraini,A. Prasetyo, and Y. Pamungkas, “Comparison of EEG-BasedBiometrics System Using Naive Bayes, Neural Network, andSupport Vector Machine,” in Proceedings - IEIT 2022: 2022International Conference on Electrical and Information Technology, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 408–413. doi: 10.1109/IEIT56384.2022.9967861.

S. Pratasik, A. D. Wibawa, dan D. P. Wulandari "Coherence Analysis of EEG Signal in Happy and Sad Emotions During Visual Stimulation" 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC) January 2024 doi.org/ 10.1109/IBITeC59006.2023.10390906.

M. Pratiwi, A. D. Wibawa, and M. H. Purnomo, “EEG-based Happyand Sad Emotions Classification using LSTM and BidirectionalLSTM,” in Proceeding - ICERA 2021: 2021 3rd InternationalConference on Electronics Representation and Algorithm, Instituteof Electrical and Electronics Engineers Inc., Jul. 2021, pp. 89–94.doi: 10.1109/ICERA53111.2021.9538698.

N. Y. Oktavia, E. S. Pane, A. D. Wibawa, and M. H. Purnomo,“Human Emotion Classification Based on EEG Signals Using NaïveBayes Method,” in 2019 International Seminar on Application forTechnology of Information and Communication (iSemantic), IEEE,2019, pp. 319–324.

Q. Yao, H. Gu, S Wang, dan X. Li, "Spatial-Frequency Characteristics of EEG Associated with the Mental Stress in Human-Machine”IEEE Journal of Biomedical and Health Informatics Volume: 28, October 2024 doi.org/10.1109/JBHI.2024.3422384.

N. H. Saputra, A. D. Wibawa, M. H. Purnomo, dan Y. Pamungkas, "EEG-based Statistical Analysis on Determining the Stress Mental State on Police Personnel" 2022 1st International Conference on Information System & Information Technology (ICISIT)IEEE September 2022 doi.org/10.1109/ICISIT54091.2022.9872909.

A. R. Subhani, A. S. Malik, N. Kamil, M. Naufal, dan M. N. M. Saad, "Using resting state coherence to distinguish between low and high stress groups" 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) IEEE January 2017 doi.org/10.1109/ICIAS.2016.7824097.

M. Barzegar, G. P. Jahromi, G. H. Meftahi, dan B. Hatef, "The Complexity of Electroencephalographic Signal Decreases during the Social Stress" Journal of medical signals and sensors 57-64, Mar 2023 doi.org/10.4103/jmss.jmss_131_21.

X. Deng, M. Yang and S. An "Differences in frontal EEG asymmetry during emotion regulation between high and low mindfulness adolescents" Biological Psychology Volume 158 Page 107990 ScienceDirect January 2021 doi.org/ 10.1016/ J.BIOPSYCHO.2020.107990.

Q. Yao, H. Gu, S. Wang, dan X. Li, "Spatial-Frequency Characteristics of EEG Associated with the Mental Stress in Human-Machine Systems" IEEE Journal of Biomedical and Health Informatics Volume 28, October 2024 doi.org/ 10.1109/JBHI.2024.3422384.

B. G. Martínez, A. M. Rodrigo, A. F. Caballero, J. M. Bogani, dan R. Alcaraz, "Neural Nonlinear predictability analysis of brain dynamics for automatic recognition of negative stress" Computing and Applications Volume 32, pages 13221–13231 IWINAC July 2018 doi.org/10.1007/S00521-018-3620-0.

Y. Dong, L. Xu, J. Zheng, D. Wu, H. Li, Y. Shao, G. Shi, dan W. Fu, "A Hybrid EEG-Based Stress State Classification Model Using Multi-Domain Transfer Entropy and PCANet" Brain Sciencesvol. 14(6) juni 2024 doi.org/10.3390/brainsci14060595.

A. V. Kurbako, E. I. Borovkova, A. N. Hramkov, A. S. Karavaev, V. I. Ponomarenko, dan M. D. Prokhorov, "Development of Hardware-Software Complex for Detecting a Stress State in Real Time from EEG Signals" 2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA) IEEE September 2023 doi.org/10.1109/DCNA59899.2023.10290513.

D. B. Resnik, "Informed Consent, Understanding, and Trust" American Journal of Bioethics Pages 61-63 mey 2021 doi.org/10.1080/15265161.2021.1906987.

M. M. Studzinska, M. Zaluski, K. Adamczyk, dan E. Tyburski, "Polish version of the Depression Anxiety Stress Scale (DASS-42) - adaptation and normalization" Psychiatria Polska volume 58(1) page 63-78 Oct 2022 doi.org/10.12740/PP/OnlineFirst/153064.

M. S. Djadoudi, S. Soulimane, dan K. F. Arbi, "The Role of Frontal Electrodes in Human State Anxiety Detection Using Wavelet Features and Machine Learning" 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC) IEEE July 2024 doi.org/10.1109/ICEEAC61226.2024.10576469.

H. G. Kim, D. K. Jeong, dan J. Y. Kim, "Emotional Stress Recognition Using Electroencephalogram Signals Based on a Three-Dimensional Convolutional Gated Self-Attention Deep Neural Network" Applied Sciences November 2022 doi.org/ 10.3390/app122111162.

M. S. Djadoudi, S. Soulimane, dan K. F. Arbi, "The Role of Frontal Electrodes in Human State Anxiety Detection Using Wavelet Features and Machine Learning" 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC) IEEE July 2024 doi.org/10.1109/ICEEAC61226.2024.10576469.

M. Aljalal, S. A. Aldosari, K. , k , “ - Based Detection of Mild Cognitive Impairment Using DWT-Based z ,” Diagnostics, vol. 14, no. 15, Jul. 2024, doi: 10.3390/diagnostics14151619.

P. Sharma, "Removal of Artifacts In EEG Signals Using Sign Based LMS Adaptive Filtering Techniques" 2023 1st International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP) IEEE Mei 2023, doi.org/ 10.1109/IHCSP56702.2023.10127136.

R. M. Tomasello, L. Grisoni, I. Boux, D. Sammler, dan F. Pulvermüller, "Instantaneous neural processing of communicative functions conveyed by speech prosody" Cerebral Cortex, Volume 32, Issue 21, Pages 4885–4901, November 2022 doi.org/10.1093/cercor/bhab522.

L. Hu and Z. Zhang, “EEG Signal Processing and Feature Extraction.” Springer, 2019. doi: https://doi.org/10.1007/978-981-13-9113-2.

A. H. Jahidin et al., “Classification of Intelligence Quotient Using EEG Sub-band Power Ratio and ANN During Mental Task,” in 2013IEEE Conference on Systems, Process & Control (ICSPC), Kuala Lumpur, Malaysia: IEEE, Dec. 2013, pp. 204–208.

M. H. Soomro, N. Badruddin, M. Z. Yusoff, and M. A. Jatoi, “Automatic Eye-Blink Artifact Removal Method Based on EMDCCA,” in 2013 ICME International Conference on Complex Medical Engineering., Beijing, China: IEEE, May 2013, pp. 186–190.

E. T. Attar "Review of electroencephalography signals approaches for mental stress assessment" Neurosciences (Riyadh) Pages 209-215,2022 Oktober 2022 doi:10.17712/nsj.2022.4.20220025.




DOI: https://doi.org/10.12962/jaree.v9i2.437

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.