Optimization Protection Coordination by Optimizing Time Dial Settings at PT. Pupuk Sriwidjaja Palembang Using Grey Wolf Method

Achmad Jawahir Januarestu, Margo Pujiantara, Ardyono Priyadi, Riko Satrya Fajar Jaelani Putra

Abstract


Overcurrent Rele (OCR) is an important component in the electric power protection system. One of the parameters that must be set on the OCR is the Pickup Current (Ip) and Time Dial Setting (TDS). To achieve optimum relay coordination by setting the time dial, several optimisation methods have been used such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), Fire Fly Algorithm (FA) and Grasshopper Optimisation Algorithm (GOA).
In this study, the TDS setting was determined through Using the Grey Wolf Optimisation (GWO) method. The GWO algorithm was able to determine the optimum value of the TDS setting for each OCR process. This is validated by the results of tests conducted using the ETAP application. The primary and secondary relays are able to coordinate effectively to secure three-phase faults that occur on each bus.
Furthermore, GWO demonstrated a superior convergence rate in compared to GOA, therefore enhancing its capacity to identify a more optimal TDS setting value. Furthermore, the objective function of GWO is more effective than that of GOA, thereby enhancing its ability to function in a more optimal manner. The results of this test demonstrate that the GWO algorithm is a reliable method for directly identifying the optimal TDS setting value for determining relay coordination settings.
Keywords—Protection Coordination Overcurrent Rele ( OCR ), Short Circuit Maximum ( IscMax ), Time Dial Setting ( TDS ), Grey Wolf Optimization ( GWO ).


Full Text:

PDF

References


F. Razavi, H. A. Abyaneh, M. Al-Dabbagh, R. Mohammadi, and H. Torkaman, “A new comprehensive genetic algorithm method for optimal overcurrent relays coordination,” Electr. Power Syst. Res., vol. 78, no. 4, pp. 713–720, 2008, doi: 10.1016/j.epsr.2007.05.013.

H. K. Karegar, H. A. Abyaneh, V. Ohis, and M. Meshkin, “Pre-processing of the optimal coordination of overcurrent relays,” Electr. Power Syst. Res., vol. 75, no. 2–3, pp. 134–141, 2005, doi: 10.1016/j.epsr.2005.02.005.

M. Pujiantara, D. C. Riawan, A. Indrasaputra, T. P. Sari, and V. Raki Mahindara, “The automation of time dial setting calculation and inverse type curve selection for over current relay based on numerical computation in real industrial electrical system,” 4th IEEE Conf. Power Eng. Renew. Energy, ICPERE 2018 - Proc., pp. 1–6, 2018, doi: 10.1109/ICPERE.2018.8739673.

R. Krishan, “Optimal Coordination of Overcurrent Relays using Gravitational Search Algorithm with DG Penetration,” 2014.

A. Darabi, M. Bagheri, G. B. Gharehpetian, and S. Member, “Highly Accurate Directional Overcurrent Coordination via Combination of Rosen ’ s Gradient Projection – Complex Method With GA-PSO Algorithm,” IEEE Syst. J., vol. PP, pp. 1–12, 2019, doi: 10.1109/JSYST.2019.2904383.

N. Rezaei, M. N. Uddin, I. K. Amin, M. L. Othman, and M. Marsadek, “Genetic Algorithm-Based Optimization of Overcurrent Relay Coordination for Improved Protection of DFIG Operated Wind Farms,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 5727–5736, 2019, doi: 10.1109/TIA.2019.2939244.

A. Tjahjono et al., “Adaptive modified firefly algorithm for optimal coordination of overcurrent relays,” IET Gener. Transm. Distrib., vol. 11, no. 10, pp. 2575–2585, 2017, doi: 10.1049/iet-gtd.2016.1563.

S. N. Langazane and A. K. Saha, “Effects of Particle Swarm Optimization and Genetic Algorithm Control Parameters on Overcurrent Relay Selectivity and Speed,” IEEE Access, vol. 10, pp. 4550–4567, 2022, doi: 10.1109/ACCESS.2022.3140679.

R. S. F. J. Putra, M. Pujiantara, and V. Lystianingrum, “Overcurrent Relay Coordination Setting on Distribution Power System Using Grasshopper optimization Algorithm,” 2023 Int. Semin. Intell. Technol. Its Appl. Leveraging Intell. Syst. to Achieve Sustain. Dev. Goals, ISITIA 2023 - Proceeding, pp. 804–809, 2023, doi: 10.1109/ISITIA59021.2023.10221124.

A. Korashy, S. Kamel, A. R. Youssef, and F. Jurado, “Solving Optimal Coordination of Direction Overcurrent Relays Problem Using Grey Wolf Optimization (GWO) Algorithm,” 2018 20th Int. Middle East Power Syst. Conf. MEPCON 2018 - Proc., pp. 621–625, 2018, doi: 10.1109/MEPCON.2018.8635234.

F. Abidin, M. Pujiantara, and D. F. U. Putra, “Optimasi Total Operating Time Rele Arus Lebih dengan Pertimbangan Konfigurasi Mesh, Open-mesh, dan Radial Menggunakan Firefly Algorithm,” J. Tek. ITS, vol. 9, no. 2, 2021, doi: 10.12962/j23373539.v9i2.53424.

C. S. Mardegan and R. Rifaat, “Considerations in Applying IEEE Recommended Practice for Protection Coordination in Industrial and Commercial Power Systems-Part i,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3705–3713, 2016, doi: 10.1109/TIA.2016.2563405.

V. R. Mahindhara and M. Pujiantara, “Optimasi Time Dial Setting (TDS) Relay Arus Lebih Menggunakan Adaptive Modified Firefly Algorithm Pada Sistem Kelistrikan PT. Pupuk Kalimantan Timur,” J. Tek. ITS, vol. 5, no. 2, 2016, doi: 10.12962/j23373539.v5i2.16019.

J. Liu, X. Wei, and H. Huang, “An Improved Grey Wolf Optimization Algorithm and Its Application in Path Planning,” IEEE Access, vol. 9, pp. 121944–121956, 2021, doi: 10.1109/ACCESS.2021.3108973.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, “Using the gray wolf optimizer for solving optimal reactive power dispatch problem,” Appl. Soft Comput. J., vol. 32, pp. 286–292, 2015, doi: 10.1016/j.asoc.2015.03.041.

A. A. El-Fergany and H. M. Hasanien, “Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms,” Electr. Power Components Syst., vol. 43, no. 13, pp. 1548–1559, 2015, doi: 10.1080/15325008.2015.1041625.

M. A. Şen and M. Kalyoncu, “Optimal Tuning of PID Controller Using Grey Wolf Optimizer Algorithm for Quadruped Robot,” Balk. J. Electr. Comput. Eng., vol. 6, no. 1, pp. 29–35, 2018, doi: 10.17694/bajece.401992.




DOI: https://doi.org/10.12962/jaree.v9i1.430

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.